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ON THE CONVERGENCE OF CERTAIN"
ITERATIONS TO THE FIXED POINTS
OF NONLINEAR OPERATORS

IOANNIS K. ARGYROS

Abstract. Our results answer to the following question: given
that a mapping has a fixed point, when is it true that the Newton
iterates produce a sequence of nearby points which converge to the
fixed point? We assume only that the nonlinear operator has a Hélder

continuous Fréchet-derivative at the fixed point.

1. Introduction.

This paper is devoted to a generalization of a theorem of Jon
Rockne [5] concerning fixed points. Consider an equation

F(z) =0 (1)

where F is a nonlinear operator between two Banach spaces X,
and X,. Under certain conditions, Newton’s method

xn+1=xn_Fl(xn)—lF(zn), n:0,1,2,... (2)

produces a sequence which converges quadratically to a solution
z* of (1). One of the assumptions of this method is that F is
twice Fréchet-differentiable in some ball around the initial iterate.
However there are many interesting problems already in the liter-
ature where the operator is only once Fréchet-differentiable [1],

(5].
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Jon Rockne [6] has given some conditions under which when
F has Holder continuous Fréchet derivatives then iteration (2)
converges to a solution z* of (1).

The theorems proved here are concerned with the following
question: given an operator has a fixed point z*, when is it true
that iteration (2) produces a sequence of nearby points which
converge to z*? Such a question is clearly of interest in numerical
analysis since many numerical problems can be reduced to the
problem of locating fixed points.

Finally, we provide two examples, one from the real scalar
case and the other using a second order differential equation.

2. Preliminaries.

We assume that F is once Fréchet differentiable [2], [4] and
F'(z) is the first Fréchet-derivative at a point z. It is well known
that F'(z) € L(X,,X,), the space of bounded linear operators
from X, to X,. We say that the Fréchet derivative F'(z) is Holder
continuous over a domain D if for some ¢ > 0, p € [0,1], and all
z,y € D,

|F'(z) - Pl < ellz - wlP- (3
In this case we say that F'(e) € Hp, (c, p).

We now include the following known result because we feel
that the literature is not too easily accessible.

Lemma. Let F : X, — X, and D C X,. Assume D 1is
open and that F'(e) exists at each point of D. If for some convez
Dy C D we have F'(e) € Hp, (c,p), then for all z,y € D,

<

c

|Fl@) - Fy) - F'@)= -9l < 7

le -yl . ()

Proof. Using standard properties of the integral and the fact
that D, is convex we have:
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1

F(&) = F(4) - F)a-3) = [(Fly+t(-9) - F () -

0

By taking norms we obtain

HF@%—F@%—F@NI—MHS/HF@+¢@—yD—

—F'(y)l - llz -yl - dt

1

< /6||y+t(z-y) —y||P -z -yl - dt
0
[

e —wl***,

and that completes the proof of the lemma.

3. Main results.

Let z* be a simple solution of (1) in the sense that F'(z*) has
a bounded inverse. Then there exists ¢ > 0 such that F'(z) has a
bounded inverse for all z € U(z*,¢) = {z € X, | ||z — z*| < €}.
Set b(z) = ||F'(z) || for z € U(z*,¢).

We can now prove the following:

Theorem 1. Let F: X, — X, and D C X,.

Assume

(a) z* € D is a simple solution of (1);
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(b) there ezists €,b > 0 such that
b(z) < b for all z € U(z*,¢).

(c) There ezists some convez set D, with z* € D, C D and
some €; > 0, with 0 < €, < € such that F'(e) € Hp,(c,p) for all
z,y € Dy and U(z*,¢,) C D,.

(d) The following estimate holds:
0<k<1,

where

cb
(p+1)2°

Fix e, > 0 such that
113
0<e < min[el, [;] ] if p#0and

0<e<e if p=0.

Then if z, € U(z*,¢,), the iterates z,, n = 0,1,2,... given
by (2) are well defined, remain in U(z*,¢,) and converge to the
unique solution z* of (1) in U(z*,¢;) with order of convergence
1+ p.

Proof. Define the operator P on U(z*,¢;) by

P(z)=z - F'(z)"'F(z) .

The operator P is well defined on U(z*,¢,) since F'(z)~' exists
on U(z*,¢;). Let z € U(z*,¢;), then

[1P(2) —2°|| = llz — =" = F'(z)™" F(2)|
= ||[F"(2)"*[F'(z)(z - 2°) — (F(z) - F(z"))]l
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<|F' (=) | /(F’(I) - F'(z +t(z* - 2)))(z — z°)dt|

1

be
e fea
—lle— |
0
<klz—z Pt <6 (5)

by the choice of ¢;,. Therefore P maps U(z*,¢;) into itself
and if z, € U(z*,¢;), all the iterates z,, n = 0,1,2,... given by
(2) remain in U(z*,€;).

Moreover,

Loy, — 2 =z, — 2" — F'(z,) ' F(z,) .
By taking norms in the above equation, as in (5) we obtain

|Znss — 2 || < kllz, — z*||P* (6)
< k(R |znoy — 2 |P*)

N (7)

Since 0 < k < 1 it follows that k*(?P+t1)+! — 0 as n — co. There-
fore by (7) the sequence {z,}, n =0,1,2,... converges to z* with
order of convergence 1 + p and that completes the proof of the
theorem.

Note that if p = 1 and the second Fréchet-derivative of F at
z* is bounded our approach can be used to prove a result similar
to the one stated in theorem 1 for the usual Newton’s method.
The order of convergence will then be 2.

Leaving that to the motivated reader we show instead how we
can increase the order of convergence of (2) to a simple solution

z* of (1).
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For z,, n =0,1,2,... prechosen we introduce the iteration

Yn = 2, — F’(xn)_lF(xn)

8
zn+1:yn—Fl(xn)-lF(yn), n=0,1,2,... ( )

We can prove the following:

Theorem 2. Assume:
(i) the hypotheses (a), (b) and (c) of theorem 1 for F hold;
(ii) the following is true:

0<k <1

where

(eb)? b °
“Grr el

Fix ¢, > O such that

ki

1

115] .
0<e; <min[el,[k—] ]1fp;60and
0<e <e if p=0.

Then if z, € U(z*,¢,), the iterates z,, n = 0,1,2,... given
by (8) are well defined, remain in U(z*,¢;) and converge to the
unique solution z* of (1) in U(z*,¢;) with order of convergence
1+ 2p.

Proof. Exactly as in theorem 1 we show that the iterates
given by (8) remain in U(z*,¢;) if 7, € U(z*, €;).

We also have

”zn+1 - 13*” = Ilyn -z - F'(-'Bn)—lF(xn)”

<N F' ()™ ML /(F'(xn) — F'(z" +t(yn — 27)))dt]] [lyn — 2|
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ch
< — —z°) +t(y. — ") |P|lyn — =*
_p+1||(z'n ') +t(yn — 2°)|7|lya — z*||
< =L (lzm = 2" [+ lgm — 2" 1)l — 2°]| -
T p+1
Moreover,

19n — 2"l < 1 F'(za) 7" I-

l /(F'(-'Bn) — F(e” +t(zn — 27)))dt]| [|zn — 27|

c

1
b
= [ -ty fz, - 2
0

<Gy ple
p

Finally, by (9) and (10) we get

<
P

p+1

* cb * P
[lza =2l + el = 77

[N

2
< A e~ ]z -

(p+ 1)

(cb)? cb P .
o Gl e -t
<kiflz, — 2t

2p+1 2p+1
Skl[kl ||13n—1_35‘ P ]

< kr(l+2p)+1|lzo —I‘” )

(9)

(10)

* ||2p+1

(11)

(12)
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Newton’s method cannot be applied to the equation
F(z)=0.

We may not be able to evaluate the second Fréchet-derivative since
it would involve the evaluation of quantities of the form z; ” and
they may not exist.

Let ze R*"!, He R*~! x R*~! and define the norms of z
and H by

Izl = max ||

n—1
I1H = maxZ R |-
=1

For all z,z € R*~! for which | z; [> 0, | z |> 0,
t=1,2,...,n— 1 we obtain

|1F'(z) — F'(2)|| = ||diag{(1 + p)h* (] — 2])}|

=(1+p)h® max |z} -2 |< (14 p)h?[max]|z; — 2 |

1<5<n-1
= (1 +p)h*|lz - 2| .

Therefore, under the assumptions of theorem 2, iteration (8)
will converge to the solution z* of (16), provided that such a
solution z* is known.
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