Annales Univ. Sei. Budapest., Sect. Comp. 8 (1987) 109-118

IMPLEMENTATION
OF ABSTRACT DATA TYPES
WITH CORRECTNESS PROOF

LASZLO VARGA

Dedicated to Professor I. K4tai on his 50** birthday

Abstract. In this paper a correct implementation of abstract
data types is defined. Abstract data types are given by algebraic speci-
fication. It is shown that a correct implementation satisfies the seman-
tic equations of the given abstract data type. On the other hand we
show that if an implementation satisfies the semantic equations of an
abstract data type then it is a correct implementation.

1. Introduction

Nowadays the use of data abstraction in programming is gen-
erally accepted. Recently many specification methods for data
abstraction have been proposed [2, 3, 4, 5]. Among them al-
gebraic specification is frequently used since it does not depend on
an abstract representation. An introduction to the method can
be found in [1]. In this paper algebraic specification is used for
describing abstract data types.

We assume that a set of abstract objects is given together with

a group of abstract data type operations where the semantics are
defined by algebraic axioms.

110 LASZLO VARGA

We assume we are also given a set of concrete objects that
represent the abstract objects and a group of concrete operations
that implement the abstract operations in question.

For a given abstract data type we define the notion of cor-
rect representation and the notion of correct implementation in
Section 2.

We prove that a concrete data type which is a correct repre-
sentation and implementation of a given abstract data type has
the same semantics as the abstract data type in question.

The next result of this paper is that if operations of a concrete
data type with correct representations satisfy the semantic axioms
of the given abstract data type, then the concrete implementation
is correct.

The results can be used in a data type specification method-
ology as it is demonstrated by an example in Section 3.

2. Theorems about correct representations and
implementations

It is known that a data type can be regarded as a pair a =
(A,F), where A = {A1,A42,...,An}, 4; (1 = 1,2,...,m) is a
recursively enumerable set, F = {fo, f1,...,fn}, and

f,‘ZA,‘1 >(A,'2 X...XA,‘,‘ —*A,'o

is a partial mapping function.

The set A, is a set of objects of the type to be defined and it is
called the type of interest. The set A, is constructive, which means
that all elements of it can be built by applying the operations f;
only.

The operations of a minimal subset of F, sufficient for pro-
ducing all elements of A; are called constructors or constructor
functions. Among the constructor functions there is at least one
constant function. In our case let fy be a constant function.

IMPLEMENTATION OF ABSTRACT DATA TYPES 111

Among the sets A; there could be sets which are formal pa-
rameters of the data type. The parameters could be replaced by
the types of interest of other data types as actual parameters. A
data type with formal parameters is called a parameterized data
type.

In the case of a parameterized data type the function f; has
the form

fi(a)p)’

where a € Ay, p= (p1,p2,---,Pk), Pi € Ai;, t €{2,3,...,k}, i; €
{1,2,...,m}.

The meaning of the operations fg, fi,...,fn could be given
by different specification methods. Among them algebraic speci-
fication gives the semantics by equations usually in the following
form:

fs(fc(aap):q) = h(fisfj:-- -sfl’a'7psQ),

where f. is a constructor, f, is a non-constructor and h is a par-
tial mapping function constructed by f;, f;,...,fi, ¢,7,...,0 €
{0,1,...,n}.

EXAMPLE.

fs(fo,p) = fo,
fa(fc(ayp)a Q) = fc(fs(as‘I)vp)a
fs(fc(a"p),Q) = p.

DEFINITION 2.1. Let d, = (4, F) be a parameterized data
type. The set C; is a correct representation of the set A, if there
is a mapping function ¢ : C; — A;, where

(Va € A1) (Jc € C1) (a=(C)).

112 LASZLO VARGA

Lemma 2.1. Let the data types d, = (A, F), d. = (C,G) be

givcn: where F={anflv--'sfka'“,fn}’G:{QOagla-”,gk,---a
gn}, A ={A1,P,...,P,}, C ={Cy,P,,...,P,} and the opera-

tions fo, f15--+5 fks 90,91, -,k are constructors. If the mapping
function © 1s given by the equations
fo = ©(90),
(Ve € C1) (W5, 1 <7< k) (file(c), p) = ©(gile,),
then Cy 1s a correct representation of A;.

Proof. It is proven by induction on the number of construc-
tor functions in a € A;.

If a = fo then there exists a ¢ = go € C; for which a = p(c).
Let a = fc(a’,p), where the lemma holds for a’. Then o’ =
©(c') and
a = fe(a',p) = fe(p(c'),p) = p(gc(c,p)) = p(c)
which verifies the lemma. O

DEFINITION 2.2. The data type d. = {C,G}, C = {C,, P},
G ={90,91s-+-39ky---,gn} is a correct implementation of the data

type da == (A,F)’ A= {AI,P}) F = {anfla"'afks--')fn) if
there is a mapping function ¢ : C; — A; which satisfies the
equations:

fo = ©(g0),
(Ve € C) (¥4, 1 <i < n) (fi(e(c), p) = ©(gi(c, p)))-
REMARK. If f;: Ax P — P then
fi(p(c),p) = gi(c,p)
holds instead of the equation
file(c),p) = ©(gi(c, p)).
AXIOM 2.1. Let d, = (A, F) be a data type. Then
a1 =az = (a1 = foAaz = fo) V(a1 # fo Aaz # fo)A
(Vfe)(Vp € P)(fs(a1,p) = fs(a2,p)),

where a;,a; € A; and Vf, means the all non-constructors if F .

IMPLEMENTATION OF ABSTRACT DATA TYPES 113

Theorem 2.1. Let d. = (C,G) be a correct simplementation
of da = (A, F). Let the semantics of d, be given by equations of
the form:

fe(fe(a,p),q) = h(fi, fj,-- -5 fi,a,p,9).
If ©(c1) = p(e2) = ¢1 = ¢a,
and ©(h(g:,95,..-,91,¢,P,9)) = h(fi, fj,. .., fi,0(c), P, q)
or h(gi,95,--->q1,¢,0,9) = h(fi, f55. .., fi,o(c),p,9),
then 9s(9c(c,p),q) = h(9:,955---,91,¢,P,9),

t.e. the semantics of d. 1s equal to the semantics of d,.

Proof. a/Letcy = gs(gc(c,p),q) and e2 = h(gi,95,---,491,¢,
p,q). Then from Definition 2.2. we have ©(¢;) = fs(f:(©(c),), 9),

but p(ez) = h(fi, fj,--., fi,(c),p,q) and p(c1) = p(c2) = ¢1 =
Co.

b/ Let pP1 = gs(gc(c’p) q) and P2 = h(gngJa --»91,6,
p,Q) Then p2=h(fi’fj)"',fla ()) —fs(fC(()),Q) =
9s(9c(c,p),q) = p1. O

REMARK. If h(fi,fj" °°afk’aapaq) =aor = fi(fj(aa Q),P),
then ObViOUSly @(h(ghgj) «ey9c,C D, q)) = h’(fi’ f]) v 'fl,‘p(c)ap’
q).

Theorem 2.2. Let the data types

da. = ({AlaP}’{anfl,-'-afka--',fn})’
= ({ClaP}a{gO,gl’-'-agk,"',gn})

be given by the same semantics:
fs(fC(a'apaq)) = h(fi)fj,"',fc’aapvq),
gs(gc(cap)’ q) = h(giagja ..y 91,C D, q)
If the mapping function p : C; — A, s deﬁncd by the equations

fo= 80(90),
(Ve € C1) (V1,1 < i < k) (filp(e), p) = ©(gi(c,p))),

114 LASZLO VARGA

where fo, f1,..., fk and go,91,...,gk are constructors in F and G
respectsvely, furthermore

P(h(gi,gj,---,gl,c,P,Q)) = h(fl'vfj""vfh‘o(c)’p7Q)
h(giagj,"-,glacapaQ) = h(fiafj’- ~-,fl,90(c),P,<1),

then d. 1s a correct smplementation of d,.
Proof. To prove the theorem we have to show that

(Ve € C1) (Vi, k<i<n) (fi(e(c),p) = p(gi(c,p))).
Let ¢ = go, then

©(9s(90,9)) = ©(h(g:,955---,91,90,9)) =
h(fis fis---s f1,0(90),9) = fo(fo,4)-

Let now ¢ = g.(c’, p), where g. is a constructor, then

©(9s(¢,9)) = ©(gs(gc(c’,p), 9)) = ©(h(g:, 955, 91,¢',p,4)) =
h(fis fis-- s froe(e),p,q) = fo(fe(o(c),p),q) =
fa(p(ge(c',),) = fa(plc),q). O

3. An example

Let the data type d; = (integer,{zero, succ, prec}) be given
by the usual semantics:

Al : prec(zero) = zero,
A2: prec(suce(z)) =1,
and the data type
d, = ({vector,indez,elem}, {new, put,access})
be given by the semantic equations

A3: access(new,t) = new — elem,

A4 : access(put(v,i,e),5) = if i = j then e else access(v, 7).

IMPLEMENTATION OF ABSTRACT DATA TYPES 115

Here the type vector has two formal parameters: index and
elem, and we write vector(indez, elem).

Using these data types we will give a representation and im-
plementation for the data type bag(elem).

type bag(elem) :
ds = ({bag,elem}, {empty, insert, delete, many})
where empty :— bag;
insert: bag x elem — bag,
delete: bag x elem — bag,

many: bag X elem — integer.

Semantic equations:

S1: delete(empty, e) = empty,

S2: delete(insert(b,e,),e;) = if e; = ez then
b else insert(delete(b,e2),e1),

S3: many(empty, e) = zero,

S4: many(insert(b,e;),e2) = if e; = ez then

succ(many((b, e2)) else many(b, e3).
Equality axiom for two vectors:
E . v1 = v = (v1 = new A vz = new) (Ve € elem)
(access(vy,€) = access(va,€)).
A possible representation of the type bag could be
© : vector(elem,integer) — bag(elem),
and then we have the following implementation:
emply. = new,
insert.(v,e) = put(v, e, succ(access(v,e€))),
delete.(v,€e) = put(v,e, prec(access(v,¢€))),

many.(v,e) = access(v,e).

116 LASZLO VARGA

Theorem 3.1. If the mapping function ¢ s given by the
equattons

empty = p(new),
insert(p(v), e) = p(put(v, e, succ(access(v, e)))),

then
d. = ({vector,elem,integer}, {empty.,insert.,delete.,many.})

ts a correct implementation of d,.

Proof. According to Theorem 2.2. we have to show that
empty., insert., delete., many, satisfy the semantic equations
S1, S2, S3, S4.

S1: put(new, e, prec(access(new,e))) = new.

Using axioms A2 and A3 with new-elem = zero and the fact
put(new, e, zero) = new we get S1.

S2: put(put(v,e1,succ(access(v,e1))), ez,
prec(access(put(v, ey, succ(access(v, e1))),e2))) =
if e; = ez then v else put(put(v, ez, prec(access(v, ez))), €1,

succ(access(put(v, ez, prec(access(v, e2))), e1))).

Substituting both sides of equations S2 according to the equal-
ity axiom E we get the result immediately.

S3: access(new,e) = zero.
This is axiom A3.

5S4 : access(put(v, ey, succ(access(v,e1))), e2) =

if e; = ez then succ(access(v,e2)) else access(v, e2).

It could be get from the axiom A4 directly. O

IMPLEMENTATION OF ABSTRACT DATA TYPES 117

References

[11BERZTISS, A. T. and THATTE, S., Specification and im-
plementation of abstract data types. In: Advances in Com-
puters, Vol. 22 (Ed. H. C. Yovits). Academic Press, New
York-London, 1983, 296-353.

[2IBURSTALL, R. M. and GOGUEN, J. A., Putting theories
together to make specifications. In: Proceedings 1977 IJCA.
MIT, Cambridge MA, 1977, 1045-1058.

[31GREITER, G., A formal method to define data types. SIG-
PLAN Notices 10 (1984) 22-31.

[41GUTTAG, J. V. and HORNING, J. J., The algebraic spec-
ification of abstract data types. Acta Informatica 9 (1978)
27-52.

[5]LISKOV, B. H. and ZILLES, S. N., Specification techniques
for data abstraction. IEEE Trans. on Software Eng., SE-1
1 (1975) 7-19.

(Received December 29, 1987)

LASZLO VARGA
Dept. of General Computer Science
Eotvos Lordnd University
H-1088, Budapest, Muzeum krt. 6-8.

HUNGARY

