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ON THE DYADIC DIFFERENTIABILITY
OF DYADIC INTEGRAL FUNCTIONS ON R+

J. PAL and F. SCHIPP

Dedicated to Prof. 1. Katai
on the occasion of his fiftieth birthday

In their paper [1] P. L. Butzer and H. J. Wagner have in-
troduced the concept of dyadic derivative for functions defined on
the dyadic field R*. Furthermore, Wagner [5] has defined the
notion of dyadic integral as the inverse of the dyadic derivative
and investigated, among others, the strong dyadic differentiabil-
ity of dyadic integrals. In this paper we shall prove some estimates
from which the result of Wagner easily follows. Moreover, these
estimates can be used also for the proof of the almost everywhere
dyadic differentiability of dyadic integrals. We shall concern our-
selves with this question in a forthcoming paper. In connection
with this see also [2] and [3] .

Let f : Rt — C be a function defined on the dyadic field
and let for every n € N

1 o _;
(1) dnf := 5 Z 2(f - 2—(j+l)f)
j=-n
be the nth dyadic ”differential quotient” of f, where 7, (h € R™)
are the dyadic translation operators:

(2) (o f)(z) := f(z+h) (z,h€R™).
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If for some point £ € R the limit
(3) im (dnf)(2) =: f1(2)

exists, then we say that f is dyadically differentiable at z € Rt
and f[!l(z) is the dyadic derivative of f at z € R*. If f € L'(R™)
is an integrable function and there exists a function g € L!(R*)
for which

(4) lim || dnf—g[1=0

holds, then f is said to be strongly dyadically differentiable in
L'(R)* and Df := g is the strong dyadic derivative of f.

Let n € N and define the function W, by its Walsh-Fourier
transform W,, as follows:

® m={s V).

Wagner has proved (see [5]) that there exists uniquely a
function W, € L'(R™) for which (5) holds; moreover,

(6) Wo(z) = lim iw,(y)dy (z € R

k— o0
2—"

and the limit can be taken either in the L!(R*)-norm or in the
pointwise sense. Here and in the sequel the symbols w, (z € R™)
denote the generalized Walsh functions.

In the following we introduce the inverse operation of the
dyadic derivative by the following definition (see [6]): if for a
function f € L'(R*) there exists a function ¢ € L*(R1) such
that

(7) lim [|[Wnxf—g]1=0,
n—oo0
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then g is called the strong dyadic integral of f and is denoted by
If (* denotes dyadic convolution) .

For this notion of dyadic integral Wagner proved that the
following assertions are equivalent for f,g € L1(R*):

1) g=1If,
0, —0
® 3) = { Y

%f(y)s y>0.

In the following we investigate the strong dyadic differentia-
bility of the dyadic integral If € L'(R*) for f € L}(Rt) . We
remark that if f € L!(R™") then If is not necessarily defined.
For example, if f := x[0,1) is the characteristic function of the
interval [0,1) then If is not defined (see [56]). Therefore, in the
following we suppose that f € L!(R*) and the dyadic integral
If € LY(RY) of f exists. First we compute the dyadic ”differen-
tial quotients” d,(If) (n € N) of If . In connection with this we
shall show the following

Lemma 1. If for a function f € LY(R™) the dyadic integral
If € L}(R™") exists, then

(9) dn(If) =d,Wpx f (nGN)

Proof. Since 7, (h € R*) are isometries in L!(R*), from
the definition of d,, it follows that

dn(If) = lim de(Wptf) = lim (doWp)*f = ( lim d Wp)xf,
m— 00 m— 00 m— 00
where the limit is taken in the L' (R*)-norm sense. Furthermore,

(10) AW = m daWimk
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and the limit can be taken either in the L!'(R*)-norm or in the
pointwise sense, where

(11) Wi k(z) := / %w,(y)dy (zeRY, mkeN).

For m > n and k € N we have

(@Wm)@) =3 3 [ 2 alo) = wripmion (1)) dy =

where
1 &K & :
a,(y) = 2 Z 27 (1 — Wo—(+1) (y)) = Z y;277
j:—n j=—n
(12) o
(y = Z y;277 e R, y; €{0,1}, n€ N).

J=—00

Since an(y) = 0 if y € [0,27"), we have that for any m > n
and ke N
anm,k = dnwn,k’

and, consequently, our lemma is proved. O

In the following our aim is to give an estimate for the func-
tions d,W, (n € N). To this end, we define 8,(y) for y € R* and
n € N as follows:

(13) Baly) := Y vz,

j=—n
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It is easy to see that
(14) 2"an(27"y) = Ban(y) (VERT, nEN).

Let us introduce the functions V, (n € N) by the following
equality:
zk

(15)  Vi(z) = klin;o/ %ﬂn(y)w,(y)dy (z€R*, neN)

(it is easy to show that this limit exists). With the functions
Vn (n € N) we can express the functions d,W, (n € N). Namely,
the following lemma is true.

Lemma 2. For everyne€ Nandze Rt
(16) (duWp)(z) = 27 "Vou (27 "z).

Proof. Using in the integral (15) the transformation 2z :=
27"y and (14), we get

2k
(dW,)(2) = Jim /  an(2)wa(e)dz =
0
2k+n
—-n 1 -n -n —
= lim 2 / 2_,;yozn(2 Y)wz(27"y)dy =
0
2k
_ 1
=2"" lim /5ﬂ2n(y)w2"‘z(y)dy=
0

=2""V2.(27"z) (z€Rt, neN).O

In the following we give an estimate for the functions V,
(n € N) . For this we define the functions L and J as follows:
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27ne2 yEe[2"+2°+k, 2" +2°+k+1)
(17) L(u) := (0<k<2°,0<s<n,neP)
0, otherwise,
1, u € [0,1)
(18) J(m):=<2""1 we2", 2"+1),neN
0, otherwise.

It is easy to see that L,J € L'(R*) and
1
(19) =2 [ Llh=3.

Using the functions L and J we can give an estimate for the
functions V;, (n € N). For this we denote by d,W (n € N) the
functions defined on the interval [0,1) in [4]. In this case the
following assertion is true.

Theorem 1. For every n € N we have the estimate

oo
(20) | Va S T(L+J)+27 ) 27¥Do + x[0,1) (| duW | +1) ,
k=0

where Dyx (k € N) is the periodic extension of the Walsh-Dirichlet
kernel Dok from the interval [0,1) to R* with period 1.

Proof. Since
(21) Bu(y) =k (y€[i2™+k,i2" +k + 1))

for i,n € N, 0 < k < 2", V,(z) can be written in the following
form:
_— k41

. k
Vul(z) = Z wk(z) / ~w(g) (y)dy+
(22)
o 2"_1 2" +k+1

+ Z( Z Wign 4 k(T) / Sw[z](y)dy) (z € R*, ne N).

i=1 k=0 i2n+k
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In the following we use the notation

i2" +k+1 L .
. o k__k +
(23) Anansa(z) : / ¢ ) U@y (s €RY),
12" +k

whereforir€ P, n€ Nand0 < k <2"andfor:=0,1< k < 2".
Using this notation we have

2" -1 oo [2"—1
04 Vo= Y Agwi+) ( > Ai2"+kws’2"+k) +
( ) k=1 t=1 \ k=0
+ x[0,1)(d, W — 1) (n € N).

Let us introduce the following notations:

(25)

oo 2™"-—1

Vn.2 = Z( Z Ai2n+k‘w,‘2n+k) (n € N)

t=1 k=0

Firstly we investigate the functions V2 (n € N) and we shall
show that

(26) |VZI<3(L+J) (neN).

Using the second mean value theorem of integral calculus and
integration by parts, we get that for every z € [1,400), ¢t € P
and 0 < k < 2™ we have

12"+ k+1
Aiznik(z) = y_zj[z] (y)dy =

—
(27) 12"+

1
k

k
= Jz: d - Jz d’
(,-zn_Hc)zo/ (z1(v)dy + (12"+k+1)2€/ (=) () dy
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where ¢ € (0,1) is an appropriate number, and J; (z € R™")
denotes the integral function of w(;) vanishing at 0 :

t
(28) T (8) = / wg(w)du  (t,z € RY),
0
In the following we shall need some estimates for the functions
(29) L(z,w) = / Ja®)dt (z,0 € R).
0

It can be shown that
(30) | Jongk(t) <27 1 (teRT, 0<k <2", nEN)

and w — L(z,w) is a 1-periodic function, if [z] # 2' for some
leNand z > 1.
Furthermore, it is easy to check that

| L(2™ + 2° + k,w) |< 27722

(31)
(weR", 0<k<2 0<s<n, neP).

Using the definition of the functions L and J (see(17), (18)),
from (30) and (31) we get the following estimate:

(32) | L(z,w) — L(z,[w]) |< L(z) + J(z) (z,w € RT).

From this and (27) the following estimate follows:

k
| Aizn 4k (z) |< TRETTY

< o (La) +J(2)) (2 [1,400)).

(2| L(z, &) | + | L(=z,1) |) <
(33)
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Using this, we get that on the interval |1, +00)

oo 2"-1

IVEISD (D | Airng |)

(34) oso—l k=0
(L+J)Zil2<3(L+J) (n € N).

<

N W

=1

For z € [0,1), ¢ € P and 0 < k < 2" we have that

1 1
(35) Ajgngk(z) =k - [ln (1 + om n k) ~ k] .

From this using the inequality

1
|In(1+¢) —t|< 5t2 (0<t<1),

it follows that on the interval [0,1)

(36) | Ai2n+k |S 2 (i E P, 0 S k < 2")

<
(12" + k)2 — 242 . 22n

and, since L = 0 and J = 1 on the interval [0,1), we get that on
the interval [0,1)

co 2"-1

1
BN VEISY (D] | Angr ) < <5 <3(L+J) (neN).
t=1 k=0

Consequently, for the functions V,2 (n € N) we have the
estimate (26).

In the following we investigate the functions V! (n € N).
Namely, we shall show that

(38) | V< 4(L+J) +2J(§: 27¥Dy) (n € N).
k=0
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For 1 < k < 2™ and z € [1,+00), using integration by parts, we
get that

k+1k
An@) = [ - D)y =
k
1 1 1 1
=/( e )wlzl dy‘;/ ar g v
0 0

1 1
1 1
;/ ((1+ 3 I)J[z1(y)dy+ E/Jm(y)dy =
0 0

= Al(z) + A2 ().

Using the second mean value theorem of integral calculus, we
have

(40) Ai(z) = % <(_1—+le - 1) .Zj[z](y)dy

(z €[1,400), 1 <k <27")

with an appropriate number £ € (0,1). Using this,we get the fol-
lowing estimate on the interval [1,+00) :

271 2"_1
l ZAllcwkIS Y. 14LI<
=1 k=1
(1)
<Y kz(L+J)<4(L+J) (n € N).
k=1
From the definition of AZ we have
2"231 2" -1 wi(2) 1
Ak(z)wi(z) = '/Jz (v)dy
(42 & (X5 J o

(z €[1,+00), n € N).
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By the definition of J and an estimate for the first factor in
(42) (see [4]), we get

| Z—: Ak (z)we(z) < 4 (Z 27D (I)) -/Jm(y)dy =
k=1 0

k=0
(43)

= 2J(z) (i 27 kD (:z:)) (z € [1,400), n € N).
k=0

For £ € [0,1) and 1 < k < 2™ we can calculate Ag(z) simply
as follows:

k+1
(44) Ax(z) = / (g 1)y =kIn(1+ ) - 1.
k

Write the sum

2" —1
Z Akwk =
(45) k=1
2" —1 1 1 2" -1 wi
= (kln(1+ 2 -1+ )we— 5 > —+ (neN)
k=1 k=1
Since

t2 1
[ In(1+¢) —t+ 5 I< §t3 (0<t<1),
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from (45) we get the following estimate on the interval [0,1) :
2"—1 L 20! 2"—1

|kZ=:Akwk| Zk2 |Z

222 ¥Dyx  (n€N).

(46)

wl

Summarizing our results, we get the desired estimate (38) for
the functions V,! (n € N) and on the basis of (24), (26) and (38)
we have proved the theorem. O

In the following we shall show that the estimate (20) for
Vn (n € N) implies among others the strong dyadic differentiabil-
ity of the dyadic integrals (see also [5]). Namely, the following
theorem is true.

Theorem 2. i) sup ||V, |l1< +00.
nEN
ii) If for a function f € L}*(R™)

(47) 7(0) = / f=0
R+

and the dyadic integral If € L'(R™")ezists, then If is strongly
dyadically differentiable and

(48) D(If) = f.

Proof. i) We know that L,J € L'(R*) and on the basis of
the definition of J we have

)

Rt
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Furthermore, using a result in [4], one has

1
(50) sup / | duW |< +00.
neN :

Thus, by the estimate (20) for V,, (n € N) part i) of the theorem
is proved.

ii) Define the operators T), (n € N) on L!(R*) as follows:
(51) T.f :=d.Wpxf (f€L'(R"), neN).

The operators Ty, (n € N) are uniformly bounded. In fact, by (16)
we have

| T 1<]| daWi (1= / 27" | Vyn(27"2) | do =
R+
—Van 1= O(1)  (n — o0).

(52)

Thus, by (9) and Banach—Steinhaus theorem it is enough to
show (48) for the elements of a dense subset in the dyadically
integrable functions satisfying (47). To this end, let us define the
set of functions

(53) S = {x[0,2°)wg-e,, : sEN, m e P}.

Then it can be shown that S is a dense subset in the set of
dyadically integrable functions.

Firstly we shall show that if f € L}(R*) is a dyadically in-
tegrable function, then

n— oo

on
(54) lim 2" [ f=0.
/
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Let h := x[0,27") (n € N). Then its Walsh-Fourier trans-
form is

~

h =2""x[0,2")

L

and by the equality

we get

2" 27"
(55) 2 [1= [ T
0 0

Putting g := I'f, by (8) we have
2~ " 2"

(56) / f= / yg(y)dy.
0 0

Since g(0) = 0 and g is w-continuous, we can estimate g by its
modulus of continuity as follows:

(57) 19(y) I=19(v) —9(0) [<w(3,27") (v €[0,277)).

From this we get

2—n 2—n
A~ Py — 1 — o~ -
| | v§(y) dy |<w(3,27") | ydy=-2"2"w(g,27"),
2
0 0

and, consequently, by (55) and (56) the inequality (54) follows.

In the following let f € L'(R*) be a dyadically integrable
function and € an arbitrary positive number. Let us decompose
the function f in the form

(58) f =X[0,2N)f+x[2N,—+-OO)f = fl +f2a
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where N € N is natural number for which

oo 2N
(59 I fali= [ 171<e 2| [11<e
2N 0
hold. Let us define an element P in the linear hull of S as follows:
o
(60) P:=Sonfy — (/ f)x[0,2V),
0

where Sy~ f1 denotes the 2V-th partial sum of f; on the interval
[0,2V). Then

(61) Jim || fy = Saw f1 [[1=0
and, consequently, by (59) and (61)

| f=P Ll fi=Plr+ | f2 1<

2N

< fr=Saew frfli + ] (/f)x[0,2N) I+ 1 f2 1< 3e,

0

(62)

if N is large enough. Thus we have proved that S is a dense subset
in the set of dyadically integrable functions.

In the following we shall show that for elements of S (48) is
true. Let

(63) f:=x[0,2°)wg-.,, (sE€N, meP)
be an arbitrary element of S. We must show that

(64) nl_i_’rr;o | dnWn * f — f ||1=0.



106 J. PAL - F. SCHIPP

By an easy calculation we get that

(dnWr + f)(2) - f(2) =

(65) - / -?—'Lyy)—_—ﬂf(y)w,(y)dy (zeRT, neN)
R+
and
T e M m+1
(66) f=2X55 %)
Consequently,

(@aWrn * f) (z) — f(z) =
(m+1)/2°
an(y) — y

v w.(y)dy (z€RT, neN).

m/2e
Let us introduce the following notation:

Fo(z):= (d,W, * f)(2°z) — f(2°z) (z€R™, neN).
It is enough to show that

(69) lim || Fy 1= 0.

Applying a simple transformation we can show that

(70) Fo(z) = 23wm(1:)O/’yn(u)'y(u)wlzl(u)du
€
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where
n(u) := an(27%u) — 27 %,
(T (W= —1— (©<u<1)
N = Y e =4 '

From (70) we get that

I Pl =l (vam)”™ [l =

=3 * 7 o <[ An 2 [T 0 (n € N),

where @ denotes the sequence of Walsh-Fourier coefficients for

any function ¢ defined [0,1). Integrating by parts one can show
that

(73) | A [l < +o0.

Moreover, since

(74) (1) = f: wpe() Loy n €N),

2k+1 - an+1
k=n+1
we get
oo
1 1 1
(75) | Y 0= Z 2571 T gndT = 2n (n € N).
k=n+1

Consequently, by (72) we have

lim || F, |1=0.0
n—oo
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