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AN INTEGRAL EQUATION
FOR THE ELECTRO-MAGNETIC
VECTOR POTENTIAL

R. H. FARZAN

Dedicated to Prof. 1. Katai
on the occasion of his fiftieth birthday

1. About 1975, a research work in the mathematical mod-
elling of the propagation of electromagnetic waves, and its ap-
plication in geophysic, started at the Department of Numerical
Analysis and Computer Science of the E6tvos Lordnd University
about in 1975. Later, this theme was inscribed in the plan of
teamworks with the Lomonosov University, Moscow, and already
a Collection of papers [1] was published in 1980, edited by V. I.
Dmitriev and 1. Kdtai. In this work the Hungarian E6tvés Lorand
Geophysical Institute also took part.

The topicality and importance of these researches, generally
and mainly for finding and exploring ore deposits !firzt of all baux-
ite) in Hungary, has been explained in the paper by Tihonov,
Dmitriev, Katai and Szabadvary [2], the first work of the Collec-
tion of papers [1]. Now these researches are in progress at Com-
puter Center of the E6tvos Lorand University too. The present
paper is the prosecution of these researches.

In [3] an integral equation is derived for the electric field
in stratified media containing inhomogeneous local bodies. The
object of this paper is an integral equation for the vector potential
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of the electro-magnetic field in the same media. The solution of
an integral equation for vector potential has some advantage in
comparison with that of an integral equation for electric field.

2. It is known that if the time-dependence of a source induc-
ing an electro-magnetic field is expressed in the form exp(—iwt),
then Maxwell’s equations can be rewritten by means of an in-
tegral transformation into a system of two vector equations of
elliptic type. The vectors of the electric (E) and magnetic (H)
fields can be expressed in terms of the vector potential A [4,5]. If
we suppose that the magnetic susceptibility 4 is a constant, one
obtains

w

E = 2 (V x (k*A)),
H= A+ ~VdivA,
7 7

where k2 = jwpo (Re ik < 0),0 is the electric conductivity which
may be a discontinuous function of the co-ordinates. If f is the
density function of the magnetic sources in the medium then

(2) L(k¥)A L -V x <kl—2 (V x (sz))) + VdivA + k%A =f1.

The function A satisfies the radiation conditions [5] at infin-
ity. On the surfaces of discontinuity the conditions for A can be
expressed in such a way that the tangential components of the
vectors E and H are continuous.

Let the origin of the co-ordinate system be at some point
of the surface of discontinuity of k, and Oz the direction of the
normal to the surface. Now the tangential components of E and
H are as follows:
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At first suppose that div A has a discontinuity of the first kind:
[div A]l,_,=d, 0<|d|< o0,

where
[Fz, %" F(2i + 0) — F(z; — 0).

Then the derivative

% div A
may be characterized at the point zg by the é-function, so H, will
not be bounded. Therefore [div A] = 0. Thus by the continuity
of H, and H, we have [k?A4,] = [k?A,] = 0, hence A, and A, are
bounded. Further, if [4;] # 0, its derivative may be characterized
by the é-function and div A will not be bounded. Therefore [4,] =
0. By the continuity of E; and E, one has

Lo(4)] _[108],  [1o(4)] _[1 0k
e e (6250 - [ e

k2 9z | |k? oz k2 9z k2 By

and finally

04,] _ _ [04. , o4,
8z | oz oy |’
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If the sources are electric, in [6,7] the expressions for E and
H are given in terms of the vector potential and the type of the
conditions on the surfaces of discontinuity.

3. Equation (2) is a three-dimensional vector equation having
discontinuous coefficients defined in an infinite domain. It may be
possible that by reducing this equation to an integral equation in
a finite domain the problem becomes simpler.

Let A™ (the vector of the normal field) be the solution of (2)
with k = kq:

(4) L(k2)A™ =f.

It is supposed that solving equation (4) is easier than solving
equation (2). Let k # ko in a local domain Vr only. The Green’s
function of the equation (4) is the fundamental matrix G(R,R,),

L(k3)G = §(R - Ro),

where § is a diagonal matrix and for columns of G
L(k3)G” = (§(R - Ro),0,0)T

etc. Then obviously
(5) A"R) = / G(R,Ro)f(Ro)dVo.
The difference A* = A — A™ (which is call by vector of anomalous
field) satisfies the equation
(6) L(k3)A® = L(k2)A — £

and therefore this equation is the same as (4) with density function
of sources L(kZ)A —f. This density function differs from zero only
in Vr. Using the fundamental matrix we have

1) A*R) = [ BR,Ro) (LKA Ro) ~ (Ro)) Vo,
Vr
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If R € Vr, we have integro-differential equation in the finite do-
main Vrp,

(8) A(R) — / G(R,Ro)L(k2)A(Ro)dVo = 0.
Vr

Observe that if k and ko are piecewise constant functions,
then
L(k*)A = AA + k%A,

and so the equation (2) and expressions (1) can be rewritten as

(9) AA + k%A =f;
E = w(V x A),
10 2
(10) H= "4+ lvava.
p p

Equation (9) is the three-dimentional Helmholtz equation. The
source in equation (6) is

L(kHA —f = AA + kZA — (AA + K2A) = (K — k?)A.
Therefore one can rewrite equation (6) and expression (7) as

(11) AA® + kEA® = (k2 — kH)A,

(12 AR) = [ (K(Ro) - K*(Ro)) B(R, Ro) A (Ro)ao

Vr
and from (11) we have the integral equation [8]
AR)+ /(k2(Ro) — k2(Ro))G (R, Ro)A(Ro)dVo =

(13) Vr
= A"(R).
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4. Let the infinite domain be a stratified medium, where
k = ko(z) is a piecewise constant function, and ko = 0 if z < 0.
If the source of the electro-magnetic field is a magnetic dipole
parallel to Oz and placed at the origin of the co-ordinate system,
then we have

T
(14) AA™ + KEA™ = (0, 0, — um(R))

For A7 we can write

AAT + k2(2)AZ =0

d0A
2 4n _ z _ . n|_
[kOAz]z.' - [ oz ]z - 0’ |R¥IH_I}OOIA:: | 0’

where the planes z = 2; are the surfaces of discontinuity. It is
obvious that A} = 0 in the whole infinite domain. Analoguosly
=0, and so A" = (0, 0, A?)T and

(15) AAT + kEA? = —umé(R),

where A? = A%(r,2), r = \/z2 + y2. Let us use Hankel’s trans-
formation

(16) A% (r,2) 2_m

oo
/ (tr)vo(t, 2)t dt,
0

where vg satisfies the ordinary differential equation

d*vg 2 2 _ 42 2
dz? — Pvo = (z)’ﬂ =t _kOa Re g > 0,
dvg 0 if 2, #0
17 —td — = ) t ’
(17 [o0les =0, [d] (& Bty
lim |vo|=0.

|2| =00
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The solution of equation (17) for piecewise constant ko (ko(z) =
ki, z_1 <2< z,-) is given in [6].

5. Let us compute now the matrix G. For G*
AG*® +k2G* = (0, 0, §(R — Ro))”.

Thus, it is clear that this equation differs from (14) in that R—R,
is used in the é-function for R. Therefore, in a similar manner
= (0, 0, G2)T and for G2

(18) AGE + k2GZ = §(R — Ry),

and by using the Hankel’s transformation

1
(19) G = 5—/ (tr)v(t, 2, 20)t dt,
0

where Ro = (Zo,¥0,20), 7 = \/(z — Z0)? + (¥ — yo)?, we have
d2
Frel — B%v = §(z — o),

_ dv _ 0, if z 75 20,
[l =0, [?d_z]z'_ - {1, if z = 29, |,,,l|l£1<,<,| v|=0.

This equation can be solved analoguosly as (17) (see [7]). If
20 € (2m—-1,2m), v can be written in this layer as
(20) v = — g Bmlr=z0l 4 ¢ (1)e=Pm(zt0)

20m

and by using Sommerfeld’s integral [9] we get

tkm|R—R
. 1 etkml of

T @ R-Ro|
(21) e

b= Jo(tr)ey(t)e=Pm(2+20)¢ gt
27
0o
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Let us pass to the computing of G*:
AG® + k2G* = (6§(R — Ry), 0, 0)T.
As in the case of G, similarly G = 0. For G7 we can write

AGZE 4+ k2GZ = §(R — Ro),

0G?Z
2T __ z|
[kOGz] - [ 8z ] 0.

It is shown that GZ = GZ(r, 2, 25) and so

o0
G: = 2i / Jo(tr)u(t, z, z0)t dt
Vi1
(22) 0
d?*u
i B2u = 6(z — 2),
du 0, ifz#z .
2 — 2 = ’ 1 0> —
[kOU]z'. - 0’ [dz] { 1, if 2; = 20, ]zl|l-£noo l “ I 0.

The solution of this problem has the same structure as (20):

W= — L ePmlz=m| 4 o ~Bm(zt+z0)

2Bm
and for G% we have

o0

s+ — [ Jo(tr)cu(t)e P (ZH20)t gt
47r|R—Ro|+27r/ oftr)eu(t)e
0

1 eitkm|R—Ro| 1
(23) Gz =

For G the following are the equation and the conditions to be
satisfied on the surfaces of discontinuity

(24) AGE + k2GE = 0,
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_ _|9GzZ
B oz z‘,°

We notice that since GZ = GZ(r,2,20), GZ is a function of
T — Zo, Y — Yo, 2 and 2.

(29 6110, | %]

2

Let us define the function B as the solution of the following
problem:

AB + k2B =0,
(26) _ oB| - ) _
[B]Z.' - 07 '5; . - [Gz]z." |Rl|lToo | B |_ 0.

It is obvious that B = B(r, z,20), and then Hankel’s transforma-
tion can be used:

1
B = Py Jo(tr)w(t, z, 20)t dt,

0\8

d*w 2
(27) '('1? - ﬂ w =0,
dw .
[w],.. - 0’ [E:I . - —[‘U,]z.., IzIII—I»noo I w |"‘ 0.

It is not difficult to solve this equation. If 2o € (2m—1,2m), in this
layer

(28) w = ¢y (t)e™Pm(zH20),
We remark that if the number of layers in the stratified medium is

not large, the functions vg, v, u and w can be written in explicit
form.
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We show that

B
(29) Gz = 9z’
because GZ (29) satisfies equation (24) and the conditions on the
discontinuous surfaces as well.

The computation of the vector GY can be done analoguosly.
It is obvious that G = GZ = G, G¥ =0 and GY = B/dy, where
B is given by (27). So

G 0 0
(30) G=|l 0 G o
4B 3B =z
8z dy z

i.e. G has four different nonzero elements.

6. We now determine a vector potential A from the inte-
gral equation (13). Suppose that the anomalous body Vr with
constant electric conductivity o is placed in one of the layers
(2m—1,2m)- Then

_ ko(z), if R ¢ VT,
k(R) o {kT, if Re€Vp.

For the numerical solution of (13), let us divide Vi into elementary
subdomains V;:

M
(31) vr=JW
i=1

so that in each V; A can be taken as constant and this constant
value should be equal to the value at some point inside the sub-
domain

A(R) = A(R,), R,R, € V,.
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Now, the integral equation (13) has been reduced to the system
of algebraic vector equations (see [3,8])

M
A(R;)+ Z a;;AR;)=A"R;), ¢1=1,...,M,
(32) 7=
&;j = (k7 — k) / G(Ri,Ro)dVo.
Vi
The elements of the matrices @;; can be computed by the method

proposed in [10, 11, 12] for the integral equation of the electric
field vector.

One can notice the difference between the computation of
the @;; here and the papers cited above. Here, for ¢+ = j, the
matrix &; has no nonintegrable singularity of O(| R — Ry |73)
if | R — Ry |— 0, but only a singularity of O(]| R — Ro |71).
Such a singularity is integrable and it vanishes if, for example, a
spherical co-ordinate system is used. Further, in the cited papers
the fundamental matrix can have nine different elements, while
here it can have four different nonzero elements, and its structure
is simpler too.

The common property is that the main parts of the integrals
G and GZ containing singularities of O(| R — Ro |~!) can be
separated ( see (18) and (23) ). Likewise, as GZ and GY, the
remaining parts of G and GZ have no singularities. So the main
parts of the integrals from the diagonal elements of G are triple
integrals on local domain. The remaining parts of the integrals
from diagonal elements of G as well as the integrals ol and af’.’ 2
are quadruple integrals but their absolute value is much smalfer
than that of above integrals. Since the integrands are smooth
and contain no singularities, in their integration with respect to
zo and yo quadrature formulae having no high powers can be
used. Integration with respect to zo can be done analitically.
It is advantageous to use the quadrature proposed in [13] for
integration with respect to t.
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After the coefficient matrices @;; have been computed, the
values of the vector potential A at the points R; € Vr can be
obtained as the solution of the system of algebraic equations (32).

If the source of the electro-magnetic field is a magnetic dipole
parallel to Oz then in the normal vector potential A™ there is only
one nonzero component A7. Because of the same structure of the
matrices @;; and the fundamental matrix G it is seen that in this
case

(33) A (R)) =A,R)=0,1=1,..., M,
and so for A,(R;) only af; , are used.

7. After the vector potential A has been obtained at every
point R; € Vr, formula (12) can be used for the computation of
the anomalous field A® throughout the domain. It should be no-
ticed however that division (31) of the domain Vr and supposition
that A is constant in V; are equivalent if the density function of
sources (k3 — k2)A(R) is changed by a set of dipoles with space-
charge density (k2 —k2)A(R;)V; placed at the points R;. Since A®
satisfies the linear equation (11), it can be solved for each of the
dipoles and after this the results can be surnmed up. In addition
the fundamental matrix G can be used

(34) A%(R) = i(kfn — k2)V,G(R,R,)A(R,).

1=1

This vector together with vector of the normal field A™ (5) will
give the vector potential A. For obtaining the vectors of the elec-
tric (E) and magnetic (H) fields, formula (10) is useful.

If the normal and anomalous parts of E and H are separated,
E™ and H” can be obtained by differentiating the integral (5). If
the source is a dipole, the integral (16) should be used. For E* and
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H® we have to differentiate the sum (34) in which only G depends
on R. Using the structure of the matrix G it can be shown that

E, = iw(k2, — k%) Zv(azB

8*B 4G BG'
Ay A
" (ay az) )
3G’ 623

B:v2 Az

Ey = iw(kZ, — k%) ZV

0%B BG’
Bzay

E,= — k3.) ZV ( ,) :
33B
— 2 2 2
pH, = (k2, — k2) Z((koG + ——61:283) A+

i

03B 7]
+ _—_6:c3y6zA"’ + Aa VG)
2 12
uHy = (kp — k) Bzayaz
3
+<k20+ 9 B) y +tA— VG)
03B
2
pH, = (ky — k1) ( 662)Ax+
3B

B 9 ” s E
+ <k06 + 3452 2)Ay++k0GzAz+A£VG>,

where G = (G,G,G?)T. Here the assumption R ¢ Vr has been
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used and so k = ko(R).

If the source is a ma.gnetlc dipole parallel to Oz then from
(33) A(R;) = (0, 0, A,(R;))T and

oGz
= fw(k2, — k2 )ZV =A,,

9G?
Ey ‘I,W(k’zn - k%) Z <_‘,t 6; Az) )
E,=0,

(k2 — k2 ZV k2GZA + A, voCz).
T 0 Oz

®
o
I

Finally we would like to remark that an analogous investi-
gation can be done if the source of the electro-magnetic field is
an electric dipole perpendicular to Oz. Furthermore, this method
can be used for some local bodies in stratified media as well [14].
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