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Abstract. In this paper some necessary and sufficient conditions
are set up for a relation to represent an arbitrarily given family of func-
tional dependencies or a Sperner-system. Our approach is based on the
study of antikeys, i.e. the maximal non-keys of a relation scheme (or
a relation). An expression on the connection between minimal keys
and antikeys is given. As an application, we show that the prime
attribute problem for a given relation can be solved in deterministic
polynomial time. The corresponding problem for relational schemes is
NP-complete.

We give an improved algorithm to find a relation representing a
given Sperner-system and discuss some related complexity problems.

1. Introduction

The relational data model was defined by Codd [7]. In this
model a relation is a table (matrix) in which each column corre-
sponds to an attribute and each row to an entity (record). Re-
lations are used to describe connections among data items. Ore
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of the main concepts in the relational data model is functional
dependency. Many papers dealing with the computational com-
plexity of functional dependencies have appeared. A relational
scheme is a pair

S=(0, F=X-Y:X,Y CQ),

where 1 is a finite set of attributes and F is a set of functional
dependencies. Denote by F'* the set of all functional dependencies
that can be derived from F by using Armstrong’s axioms [2].

The membership problem for a relational scheme (i.e. given
a relational scheme S = (2, F) and a functional dependency X —
Y, decide whether X — Y belongs to F*) can be solved by an
efficient polynomial time algorithm [3]. Based on this method,
one can find an irredundant cover [3] in polynomial time. Maier
[17] constructed a polynomial time algorithm for determining a
minimum cover for a given relational scheme. In [3] it is proved
that the problem of determining whether a relational scheme is in
Boyce-Codd normal form is NP-complete.

The structure of sets of minimal keys has been thoroughly
investigated, too. It was shown [20] that the number of minimal
keys for a relational scheme S = (Q, F) can be exponential in | Q2 |.
In (5] a relational scheme S = (Q, F) is constructed in which
| Q|=k(k—1),| F|=k and S has k! minimal keys. The equiva-
lence of sets of minimal keys with Sperner-systems is well-known
[9]. The representation of minimal keys by a given set of func-
tional dependencies is given in [6]. An algorithm that determines
the minimal keys can be constructed from it. In [11] the authors
successfully investigated and constructed the minimal relations
representing a given Sperner-system in some special cases.

Antikeys (i.e. maximal non-keys ) play an essential role in
extremal problems of the relational data model as well as in the
construction of relations representing a Sperner-system [18] or in
finding minimal keys [1]. Also the set of antikeys is a Sperner-
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system. The connections between minimal keys and antikeys are
shown in [11,19].

Algorithms determining the set of all minimal keys for a re-
lational scheme were constructed in [6,8,12,13,15,16]. It is
interesting to note that the methods of C. L. Lucchesi, S. L. Os-
born and M. C. Fernandez have polynomial complexity in many
special cases. Thus, very frequently (especially, when there is a
relatively small number of minimal keys only), these algorithms
are much better than those in [6,8,13].

The prime attributes and minimal keys play important roles
in the normalization process of relations. Lucchesi and Osborn
[16] proved that the next two essential problems are NP-complete:

(1) The prime attribute problem: Given a relational scheme and
an attribute A, decide whether A belongs to any minimal key.

(2) The key of cardinality problem: Given a relational scheme
and an integer m > 1, decide whether there exists a key of
cardinality less than m.

Using the NP-completeness of (2) it is shown in [17] that
the optimal cover problem is NP-complete.

In Section 2 the necessary definitions are presented. In Sec-
tion 3 we give some results about relations representing an arbi-
trarily given family of functional dependencies and/or a Sperner-
system.

Beeri et al. [4] proved that problem (2) remains NP-complete
even if the input is a fixed relation (matrix) instead of a rela-
tional scheme. In Section 3, however, we establish an expression
on the connection between minimal keys and antikeys, and prove
that if relations (i.e. matrices) are considered instead of relational
schemes then the prime attribute problem can be solved in poly-
nomial time. In [16] Lucchesi and Osborn proved that the key
cardinality problem is polynomially transformable to the prime
attribute problem. Thus, if NP # P, then this transformation is
not possible for relations.
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In Section 4 first we construct a combinatorial algorithm for
finding a relation which represents a given Sperner-system K. The
worst-case time of this algorithm is exponential in the number of
attributes and in | K |. We show, however, that in many cases
(especially, if the number of elements of K is small) this algorithm
is polynomial in the input size. We prove that the time complexity
of finding a relation which represents a given Sperner-system K
is exponential in | K |. Conversely, it is shown that the time
complexity of finding the set of all minimal keys of a given relation
R is not polynomial unless P = N P.

2. Definitions

In this section we give some definitions.

Let @ = {ay,...,a,} be a finite nonempty set of attributes.
For each attribute a; there is a nonempty set D(a;) of possible
values of that attribute. An arbitrary finite subset of the Cartesian
product D(a;) X ... x D(ay) is called a relation over 1. Clearly,
a relation over (1 is a set of mappings

h:Q— U D(a),
a€N
where h(a) € D(a) for all a € Q.

DEFINITION 2.1. Let R = {h1,...,hm} be a relation over
the finite set ) of attributes and A,B C Q. We say that B
functionally depends on A in R (denoted as A — B) iff

(Vh;,hj € R) ((Va € A) (h,(a) = hj (a)) —

— (Vb € B) (hi(b) = h;(b))),
where 1 < 1,7 <m.

Let Fp = {(A,B) : A — B holds for R}. Fpg is called the
full family of functional dependencies in R.
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DEFINITION 2.2. Let 1 be a finite set, and denote P(Q) its
power set. Let F C P(2) x P(Q1). We say that F is an f-family
over (1 iff for all A,B,C,D CQ:

(F1) (A, A) € F;

(F2) (A,B)€ F, (B,C)e F — (A,C) € F;

(F3) (A,B)eF, ACC, DCB— (C,D)E€ F;
(F4) (A,B)eF, (C,D)e F - (AUC,BUD)EF.

Clearly, Fg is an f-family over (1.

It is known [2] that if F is an arbitrary f-family over Q,
then there is a relation R such that Fr = F.

DEFINITION 2.3. The mapping £ : P(Q2) — P(Q) is called
a closure operation over (1 iff for every A,B C 1 :

(1) A C £(a),
(2) AC B — £(4) C L(B),
(3) £(£(4)) = L(A).

REMARK 2.4. Clearly, if F is an f-family, and we define
Lr(A) as
Lr(A)={beQ: (A {b}) € F}

then Lr is a closure operation over 1. Conversely, it is known
[2,9] that if £ is a closure operation, then there is exactly one
f-family F over Q so that £ = L, where

F={(A,B): A,BCQ, BC L(A)}.

Thus, there is a one-to-one correspondence between closure oper-
ations ‘and f-families over (1.

DEFINITION 2.5. Let R be a relation, £ a closure operation
over ). Kiscalledakeyof R (of L) if K — Q (L(K) =1Q). K is
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a minimal key of R (of £) if K is a key of R (of £), but B /4 Q
(L(B) # Q) for any proper subset B of K. Denote Kr (KL)
the set of all minimal keys of R (of £). Clearly, K;,K2: € Kg
implies K; ¢ K,. The systems of subsets of 1 satisfying this
condition are called Sperner-systems. Consequently, Kg, K are
Sperner-systems [18].

DEFINITION 2.6. Let K be a Sperner-system over {1. We
define the set of antikeys of K, denoted by K !, as follows: a set
B is an antikey (B € K1) iff

(i) no subset of B is a key (K € B if K € K) but

(ii) B is maximal with respect to this property in the sense that
all proper supersets C of B (i.e. B C C, B # C) contain at
least one key.

It is easy to see that the elements of K~! are maximal non-
keys and K~ ! is a Sperner-system over (1.

Theorem 2.7 [9,11]. If K is an arbitrary Sperner-system
then there ts a closure operation L for which Kp = K.

In this paper, we always assume that if a Sperner-system
plays the role of the set of minimal keys (antikeys) then it is not
empty (it is not 02 ).

DEFINITION 2.8 [2]. Let F be an f-family over 1 and
(A,B) € F. We say that (A, B) is a maximal right side depen-
dency of F iff

VB' (BCB'): (A,B')e F—»B=hH.

Denote by M(F) the set of all maximal right side dependencies
of F. We say that B is a maximal side of F iff there is an A such
that (A, B) € M(F). Denote by I(F) the set of all maximal sides
of F.

DEFINITION 2.9. Let R be a relation, F an f-family, K

a Sperner-system over {l. We say that R represents F(K) iff
Fr =F (Kgr = K).
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DEFINITION 2.10. Let R = {hi1,...,hm} be a relation over
. For 1 < ¢ < j < m denote by E;; the set {a € Q : h;(a) =
hj(a)}. We put Egp = {E;; : 1 <1< j<m}. Epis called the
equality set of R.

3. Antikeys and prime attributes

First we give a necessary and sufficient condition for a relation
to represent an arbitrarily given f-family.

Theorem 3.1. Let R = {hy,...,h,n,} be a relation, F an
f-family over ). Then R represents F iff for every A C Q)

AQE.-j

N E;; if JE;; € Er: AC Eyj,
Lr(A) =

N otherwise.

(Recall that Lr(A) = {a€ Q: (A,{a}) € F} and Ep is the
equality set of R.)

Proof. First we prove that in an arbitrary relation R for all
ACO

ACE;;

n E,’j if HE,'J' €FEgr: AC Eija
f’FR (A) =

0 otherwise.

Let us first assume that A is a set such that there is no E;; €
Eg with A C E;;. Then for all h;, hj € R a € A: hi(a) = hj(a).
According to the definition of functional dependency, this implies
A — 1, and by the definition of L, we obtain Lp,(4) = Q.

Clearly,
Lr,(0)= ()] Ey
E€ERr
holds. If A # 0 and there is an E;; € E such that A C E;; then

we set
V ={E;j : AC E;j, E;j € Eg}
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and
E= () Ei.
E;eV
It is easy to see that A C F holds. If V = Ep then it is obvious
that (A,E) € Fg.
If V # Eg then it can be seen that for all E;; € V we have

(Va € 4) (hi(a) = hj(a)) = (Vb € B) (hi(b) = k(b))

and for all E;; ¢ V there is an a € A such that h;(a) # h;(a).
Thus, (A, E) € Fg holds.

By the definition of Lf,, we have E C Lp,(A). Since R is
a relation over 2 , we have E C Q). Using A C E C L, (A), we
obtain (E, Lp,(A)) € Fg.

Now we assume that c is an attribute such that ¢ ¢ E. Then,
there is an E;; € V so that ¢ ¢ E;;. This implies the existence
of a pair hi,h; € R such that Vb € E : hi(b) = h;(b) holds,
but hi(c) # h;(c). By the definition of functional dependency
(E U {c}) does not depend on E. Thus, for all attributes ¢ ¢ E
we have (E, E U{c}) ¢ Fgr. By the definition of Lr, we obtain

Lr,(A) = [) Ei-

E;;eV

By Remark 2.4 it is easy to see that Fgr = F holds iff Lp, = LF
does. The theorem is proved. O

DEFINITION 3.2. Let £ be a closure operation over 1, N C
P(Q1). Let Nt denote the set {NN’: N’ C N}. Using the con-
vention N0 = {1 we see that Nt always contains 0.

Let Z(L) = {ACQ: L(A) = A}. The elements of Z(L) are
called closed sets.

Clearly, Z(L) is closed under intersection.

It can be seen that for all E;; (E;; € Eg) we have E;; €
Z(Lrg),ie. Ef C Z(LFy).
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By Theorem 3.1 Z(Lr,) C E# holds. We have proved

COROLLARY 3.3. Let R be a relation, F an f-family over
(. Then R represents F iff Z(Lr,) = Ef holds. O

It is known [2,9] that for an arbitrary non-empty Sperner-
system K there is a relation R such that K = Kg.

Now we give a necessary and sufficient condition for a relation
to represent a given Sperner-system. First we introduce the notion
of maximal equality system.

DEFINITION 3.4. Let R = {h1,...,hm} be a relation over
1, ER is the equality set of R. Let

Mgp ={E;j€Er: VE, € ER: E;; C Ey, E;j # Eg,

1<i<j<m, 1<s<t<m}.

Mp, is called the maximal equality system of R.

Theorem 3.5. Let K be a non-empty Sperner-system, R a
relation over Q. Then R represents K iff K~! = Mp.

Proof. It can be seen that if K is a non-empty Sperner-
system then K~! exists. On the other hand, K and K~! are
uniquely determined by each other therefore Kg = K holds iff
Kg! = K~! does. Now it suffices to show that Kz! = Mg holds.
Clearly, Fg is an f-family over Q. First we suppose that A is an
antikey of Kr. Obviously A # 1. If there is a B such that A C B
and A — B, then by the definition of antikeys we have B — Q1
and A — . This is a contradiction. So A € I(Fg) holds. If there
is a B’ such that B’ # 1, B’ € I(Fg) and A C B’, then B’ is a
key of R. This contradicts B’ # Q. Hence A € I(Fg) — 1 and
JB' (B'€ I(Fr)-Q): ACB'.

On the other hand, according to the definition of a relation,
1 ¢ Mg. Clearly, E;; € I(Fr). Thus, Mg C I(Fg) holds. If
D is a set such that VC € Mp : D ¢ C, then D is a key of
R. Consequently, Mg is the set of maximal distinct elements of
I(FR). So we obtain A € M.
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Conversely, if A € Mg, then according to the definition of
a relation and Mgr we obtain A 4 ,ie. VK € Kgp : K € A.
On the other hand, because A is a maximal equality set, for all
D (A C D) we have D — (1, therefore by the definition of antikeys
A € Kg! holds. The theorem is proved. O

We mention here a result relating the sizes of K~! and K.

Theorem 3.6 [11]. Let K be a Sperner-system over Q). Let
8(K) = min {m : K = Kg, | R |= m, R ts a relation over (1}.
Then

(1) 2| K-1]|<s(K)<| K| +1.

DEFINITION 3.7 [7]. Let R be a relation over 2 and Kg
the set of all minimal keys of R. We say that a is a prime attribute
of R iff there is a K € Kg such that a € K.

The following result expresses the set of prime attributes in
terms of antikeys.

Theorem 3.8. Let K be a Sperner-system over (1. Then
UK =0 -nK-L

Proof. If ¢ € UK, then there exists a K € K such that
c€ K. Let H = K — {c}. As H contains no keys, there exists an
antikey B € K~! such that B contains H. It is clear that ¢ ¢ B,
for otherwise we have K C B which is impossible. Now we see
that

ceEN-BCN-nNKL,

Now suppose that ¢ ¢ UK and let B € K~1. It suffices to show
that ¢ € B. Indirectly assume ¢ ¢ B. Then {c} U B contains a
key K € K. As K C B, we have ¢ € K, a contradiction. O

Based on Theorems 3.5 and 3.8 we show that when the input

is a relation, then the prime attribute problem can be solved in
deterministic polynomial time.
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First we construct an algorithm for determining the set of
prime attributes of a relation.

ALGORITHM 3.9. Input: R = {hy,...,hn}, arelation over
0.

Output: V, the set of all prime attributes of R.

Step 1: From R we construct the set Ep = {Ej; : 1 <1<
Jj <m}, where E;; = {a € Q: h;(a) = hj(a)}.

Step 2: From Ex we construct the set

M ={BeP(Q): 3E; € Er: Ey = B}.

Step 3: Theset Mg ={BeM: VB e M: B ¢ B'}is
computed.

Step 4: Construct the set V =0 — NMp.

Clearly, | Mg |[<| M |<| Eg |= (") holds, so the worst-case
time of Algorithm 3.9 is polynomial in the number of rows and
columns of R.

From Theorems 3.5 and 3.8 and Algorithm 3.9 the next corol-
lary is clear.

COROLLARY 3.10. There is an algorithm that given a rela-
tion R, decides whether an attribute is prime or not, with worst-
case time polynomial in the number of rows and columns of R. O

4. Finding relations and minimal keys

First we construct an algorithm for finding the set of antikeys
of a given Sperner-system, as follows.

Let an arbitrary Sperner-system K = {Ky,...,K,,} over
be given. We set K; = {0 — {a} : a € K,}. It is obvious that
Kl = {Kl}—l.

Let us suppose that we have constructed Kg = {Ky,..., Kz} !
for ¢ < m. We assume that X1,..., X; are the elements of K, con-
taining Kg41. So Kg = F, U{Xj,...,X;}, where Fy = {B € K, :
Kqt1 € B}.
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For all i (¢ = 1,...,t;) we construct the antikeys of {K41}
on X; in the analogous way as K1, which are the maximal subsets
of X not containing K,4;. We denote them by B},...,B: (i =
1,...,t). Let K41 = FU{B, : B€ F; > B} ¢ B, 1 <1<
t’ 1 S p S T;’}-

Theorem 4.1. For every ¢ (1< q<m)

Kq = {Kl,...,Kq}_l

1.e.

Proof. We have to prove that Kq41 = {K1,...,Kq+1}7 %

For this using the inductive hypothesis K; = {K1,..., K¢}~ ', we

show that

(a) If B € Kg41 then B is the subset of 2 not containing K; (t =
1,...,¢ + 1) and being maximal for this property, i.e. B €
{Kl,. ..,Kq+1}_1.

(b) Every B C Q not containing the elements K; (t = 1,...,¢+1)
and being maximal for this property is an element of Kg, ;.
Part (a): Let B € Kg41. If B € Fy then B does not contain

the elements K; (¢t = 1,...,¢q) and B is maximal for this property

and at the same time K, Z B. Consequently, B is a maximal

subset of (1 not containing K; (t =1,...,¢+ 1).

Let B € Kq41 — F,. Clearly, there is a Bi (1<:< tg, 1 <

t < r;) such that Bf = B. Our construction shows that K; ¢

B: (I = 1,...,¢+1). Since Bj is an antikey of K, for X; we

obtain B} = X; — {b} for some b € K ;. Obviously K,4; C

Biu {b}. If a € Q — X, then by the inductive hypothesis, for

BtU{a b} = X; U {a} there is a K, (1 < s < q) so that K, C

B} U {a,b}. X; does not contain Ki,...,Kq by X; € K;. Hence,

a € K,. If K, —{a} C B!, then K, C B! U {a}. For every

K, (1 <s<gq)with K, C X;U{a} and K, Z B} we have b € K,.

Hence, K, — {a,b} C B;'. Consequently, there is a By € Fj so
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that B} C Bj. This contradicts B € Kq41 — Fy. So there is a
K, (1 < s < q) such that K, C B} U {a}.

Part (b): Suppose that B is a maximal subset of {2 not con-
taining K; (¢ = 1,...,¢g + 1). By the inductive hypothesis, there
isaY € Kg such that BC Y.

The first case: If Kg41 € Y then Y does not contain Kj,...,
Kg+1. B is a maximal subset of Q2 not containing K, (t =1,...,
g+1),sowehave B=Y. K41 €Y implies B € F,. Thus,
B € Kg+1.

The second case: If K41 CY then Y = X; for some ¢ (1<
¢ < t) and B C B;} holds for some t (1 <t < r;). If there is a
B, € F; such that Bf C B;, then we also have B C B;. By the
definition of Fy it is clear that B; does not contain Kj,..., Kg41.
This contradicts the definition of B. Hence, Bf € Kg+1 holds. It is
easy to see that B} = B holds. Thus, Kg+1 = {Ki,... ,Kq+1}_1.
The theorem is proved. O

Let Ko = Q. We have K; = F, U {X},...,X;}, where 1 <
g < m — 1. Denote by I, the number of elements of K;. When
constructing Kq+1, the worst-case time is O(n?(lg—tg)t,) if tq < lg
and O(n?ty) if l; = t,. For the total time we derive

m—1
O(n2 Z tun):
q=0

where
7 1 otherwise.
In [19] it is proved that the worst-case time of our algorithm
is exponential not only in | 2 | but also in the number of elements

of K.

It can be seen that if there are only a few minimal keys (i.e.
K is a small set) this algorithm is very effective, it runs in time
polynomial in | Q |. When I, <, holds (¢ = 1,...,m — 1) then
the number of elementary steps at most O(n2- | K |- | K~1 |?).
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Thus, in these cases our algorithm finds K~! in polynomial
timein |[Q ], | K |and | K~1|.

Now we give an algorithm that determines a relation repre-
senting a given Sperner-system.

ALGORITHM 4.2. Input: K = {K;,...,Km}, a Sperner-
system over 2.

Output: A relation R representing K.

Step 1: Based on the above algorithm, we construct K 1.

Step 2: Let K~! = {By,..., B:} be the set of antikeys of K.

Let R = {ho,h1,...,ht} be a relation over 2 given as follows:

for all a € N, ho(a) =0,

0 ifae€ By,

fori (1<i<t), hila) = { 1 otherwise.

By Theorem 3.5 it is clear that R represents K.

It is easy to see that the time complexity of this algorithm is
the same as that of the algorithm which finds the set of antikeys.

Theorem 4.3. The time complexity of finding a relation
representing a given Sperner-system K s ezactly exponential in
the number of elements of K.

Proof.(1) We have Algorithm 4.2 that determines a relation
representing a given Sperner-system K, and whose worst-case time
is exponential, not only in | @ | but also in | K |.

Now we have to prove:

(2) There is no algorithm that finds a relation representing K in
time subexponential in the number of elements of K.

To this end we give a construction. For the sake of simplicity,
we assume that n =| Q | is divisible by 3. Let 0 = X; U...U X,,
be a partition of 1, where m =n/3, and | X; |=3 (1 <i<m).

Let K = {K:| K |=2, K C X, for some t}. It is easy to see
that K~'={B:| BN X; |=1, Vi}.

Clearly, 3™ =| K~! | holds. It is clear that n =| K |. From
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Theorem 3.6 we obtain
V2 x 3™ < s(K),

i.e. the number of rows of a minimal relation representing K s
at least /2 x 3™. Thus, we can always construct an example,
in which the cardinality of K is not greater than | Q |, but the:
number of rows of any relation representing K is exponential in
| K| . From (1) and (2) the proof is complete. O

REMARK 4.4. In [4] it is proved that the complexity of
finding an Armstrong relation for a given relational scheme is
exponential in the number of attributes for all inputs.

On the contrary, Algorithm 4.2 runs in polynomial time if
| K | is small.

As a closing remark, we mention that the complexity of find-
ing the set of all minimal keys of a given relation R is exponential
in the size of R. On the one hand, one can test all the subsets
of columns in exponential time. On the other hand, we can con-
struct a relation R such that the output (the set of minimal keys)
has exponential size as follows.

R has n+ 1 rows and 2n columns. For 1 <1 < n the ¢-th row
has ¢ in columns 2¢ — 1 and 2:. All other entries are 0. It is easy
to see that z C {1,...,2n} is a minimal key iff it contains ezactly
one of the numbers 27 — 1, 27 for 1 < 7 < n. We conclude that the
number of minimal keys is 2".

References

(1] AHO, A. V., HOPCROFT, J. E. and ULLMAN 1J. D., The
Design and Analysis of Computer Algorithms. Addison-
Wesley Publ. Co., Reading MA, 1974.

[2] ARMSTRONG, W. W., Dependency structures of data base
relationships. In: Inf. Proces. 74. North-Holland Publ. Co.,
Amsterdam-London, 1974, 580-583.



50 J. DEMETROVICS - V. D. THI

[3] BEERI, C. and BERNSTEIN, P. A., Computational prob-
lems related to the design of normal form relational schemes.
ACM Trans. Database Syst. 4 (1) (1979) 30-59.

[4] BEERI, C., DOWN, M., FAGIN, R. and STATMAN, R., On
the structure of Armstrong relations for functional dependen-
cies. J. ACM 31 (1) (1984) 30-46.

[5] BEKESSY, A. and DEMETROVICS, J., Contribution to
the theory of data base relations. Discrete Mathematics 27
(1979) 1-10.

(6] BERNSTEIN, P. A., Normalization and functional depen-
dencies in the relational data base model. Ph.D. Dissertation,
Univ. of Toronto, 1975.

[7] CODD, E. F., A relational model for large shared data banks.
Comm. ACM 13 (1970) 377-3817.

(8] DELOBEL, C. and CASEY, R. G., Decomposition of a data
base and the theory of Boolean switching functions. IBM J.
Res. Develop. 17 (5) (1973) 374-386.

[9] DEMETROVICS, J., On the equivalence of candidate keys
with Sperner-systems. Acta Cybernetica4 (3) (1979) 247-252.

[10JDEMETROVICS, J. and GYEPESI, GY., On the functional
dependency and some generalizations of it. Acta Cybernetica
5 (3) (1981) 295-305.

[111DEMETROVICS, J., FUREDI, Z. and KATONA, G. O. H.,
Minimal matrix representation of closure operations. Drs-
crete Applied. Math. 11 (1985) 115-128.

(121 DEMETROVICS, J. and THI, V. D., Relations and minimal
keys. Acta Cybernetica 8 (3) (1988) 279-285.

[13]FADOUS, R. Y., Mathematical foundations for relational
data bases. Ph.D. Dissertation, Computer Science Dept. of
Michigan Univ., 1975.

[14]1FAGIN, R., Armstrong databases. In: Proc. 7th IBM Symp.
on Mathematical Foundations of Computer Science (Kana-
gawa, Japan, 1982).



KEYS, ANTIKEYS AND PRIME ATTRIBUTES 51

[15]FERNANDEZ, M. C., Determining the normalization level
of a relation on the basis of Armstrong’s axioms. Computer
and Artif. Intell. (Czechoslovakia) 3 (1984) 495-504.

[16]LUCCHESI, C. L. and OSBORN, S. L., Candidate keys for
relations. J. Comput. Syst. Sciences 17 (2) (1978) 270-279.

[17JMAIER, D., Minimum covers in the relational database model
J. ACM 27 (1980) 664-674.

[18]SPERNER, E., Ein Satz iber Untermengen einer endlichen
Menge. Math. Zeit. 27 (1928) 544-548.

(191 THI, V. D., Minimal keys and antikeys. Acta Cybernetica 7
(4) (1986) 361-371.

[20]1YU, C. T. and JOHNSON, D. T., On the complexity of find-
ing the set of candidate keys for a given set of functional
dependencies. Inf. Proces. Lett. 5 (4) (1976) 100-101.

(Received December 3, 1987)

JANOS DEMETROVICS V. D. THI
Computer and Automation Institute,
Hungarian Academy of Sciences
H-1132 Budapest, Victor Hugo u. 18-22.

HUNGARY








