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ON WALD-TYPE INEQUALITIES

N. L. BASSILY, S. ISHAK and J. MOGYORODI
Dedicated to Professor Imre K4tai on his 50t* birthday

Abstract. We deduce estimates for the supremum of the stopped
partial sums of i.i.d. random variables with zero mean when the stop-
ping time is a.s. finite.If the order of the desired moment of the supre-
mum is not less than 2 the obtained inequalities are two-sided and exact
up to a constant. For the absolute moments less than 2 it is not pos-
sible to obtain two-sided inequalities in general (see [8, Example 8.2.
and page 281]). In this case we give an upper estimate for the desired
moment of the supremum. These estimates are given in terms of the
corresponding moment of the stopping time and of the i.i.d. random
variables. These yield estimates for the corresponding moment of the
a.s. limit of the stopped partial sums. In case of nonzero mean i.i.d.
random variables the absolute moments of the stopped sums are also
estimated by the corresponding moment of the stopping time and of
the i.i.d. summands. These are given in the form of necessary and
sufficient conditions. The obtained results improve a part of the results
of paper [9].

1. Introduction

Let Y7,Y5,... be independent and identically distributed ran-
dom variables with finite expectation E(Y;) = a. Let Sp = 0 and
Sp. =Y1+...+Y,, n > 1, be the corresponding random walk.
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Consider the o-field #, = o(Y1,...,Y,), n > 1,and let ¥ = (0,Q)
be the trivial o-field. Then the sequence {S, —an}32, is a martin-
gale with respect to the increasing sequence {#,}52 , of o-fields.

Given two real numbers a and b we introduce the notation
min(a,b) =a Ab.

If v is a stopping time with respect to {#,}3%, such that P(v <
+00) = 1, then the sequence

{SvAn - a(V A n)’ 771};;.0:0

is the martingale {S, —an, #,} stopped at the moment v. The a.s.
limit of {Syan —a(v An)} is S, — av as n — +o00, where

Sy —av = Z(S,. —na)x(v=n) = Z(K —a)x(+o0 > v >1)

and x(A) stands for the indicator of the event A. Thus on the set
{v = 400} the random variable S, — av is defined to be equal to
0. This is not an essential restriction since P(v = +o00) = 0 and
on the event {v¥ = +00} the symbol Sy, — a(+00) is not defined.
The following Wald identities are well-known:
a/ if E(v) < 400, then E(S, —av) =0 (E(S,) = aE(v)),
b/ if E(v) < +oo and 02 = E((Y; — a)?) < +o00, then

E((S, — av)?) = 02E(v).

Let X, = Syan —a(vAn) and put X* =sup,,5; | X, | . The
purpose of the present note is to give one- or two-sided inequalities
for E(X*P) , where 1 < p < +o00. Since | S, —av |< X*, in such a
way we can obtain one- or two-sided inequalities for the moment
E(| Sy — av |P). These will be called Wald-type inequalities. E.g.
one of them is the generalization of the two-sided inequality

n
cpoPn?/? < E(| ) (Yi—a) [P) < C,E(| Y1 —a [P)n?/?

1=1
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due to Marcinkiewicz and Zygmund , which is valid for 2 < p <
+0o0. Here ¢, > 0 and Cp, > O are constants depending only
on p. The proof of the assertions will be based on the use of
the Burkholder-Davis—Gundy inequality and a Rosenthal-type in-
equality for martingales ( see [1] and [3] ).

It is also important to give estimates for the absolute p-th mo-
ment of the stopped sum S, of the random variables Y;,Y>,... .
We do not suppose in this case that the Y;’s are centered at their
expectation. Here

(o ] (o ]
S, = Z Spx(v=n) = ZY.-x(+oo >v2>i).
n=1

t=1

This will be done at the end of the present note in form of nec-
essary and sufficient conditions. These results improve a part of
the results obtained by A. Gut and S. Janson [9]..

2. Wald-type inequalities

Given a martingale (Xp, 7,)3%, let do = 0 and d; = X; —
X;—1, ¢t > 1, be its difference sequence. The quadratic variation
of the martingale is given by the relation

S =8(X)= (i d;%)'/2,
1=1

Let
X* =sup | X, |
n>1
be the maximal function of the martingale [2]. The Burkholder—

Davis—Gundy inequality (see [1, Theorem 15.1]) says that for
1 < p < 400 we have

cpE(SP) < E(X*P) < C,E(S")
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provided that any of the expectations E(S?) and E(X*P) is finite.
Here ¢, > 0 and C, > O are constants depending only on p. In
this case {X,}32, is uniformly integrable and thus there exists
a random variable X € L, such that X,, = E(X | #,) a.s. for
every n > 1. Here X is the a.s. limit of the martingale (X, #,).
If S € L, then we say that X belongs to the Hardy space ¥,. In
this case we put

X0y, =l S lp -

It is easy to see that || - ||  is a norm on X,. By the above
inequality X € ¥, if and only if X* € L,.

We also make use of the following result of one of the present
authors (see [3, Theorem 1 and Theorem 2]). Let

s = s(X) = (Z E(ds* | %i-1))*/?

1=1

be the so called conditional quadratic variation of the square in-
tegrable martingale (X,, #,). Then for p > 2 we have

ep{E(s”) + ) _E(|di ")} < E(| X |P) < E(X*?) <

=1

o0
< Cp{E(s?) +)_E( di )},
=1
where ¢, > 0 and Cp > 0 are constants depending only on p.
(See also [1].) Here X is the a.s. limit of {X,, %,}.

In the case of the stopped random walk the martingale dif-
ferences are d; = Y;x(v > 1), ¢+ > 1. Remark that Y; and x(v > 1)
are independent.

Theorem 1. a) The a.s. imit S, — av of the stopped mar-
tingale

{Xn =Svan —a(vAn), 7},
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belongs to the Hardy-space }p for some p, where 1 < p < +o0, if
and only if the condition

oo p/2
®)  E ( (Z(m - a)x(v > ,-)) ) <-+oo
holds. In this case for p =1 we have
o 1/2
E(|S, —av|)<CLE ((Z(Yi —a)? x(v> z)) ) ,
i=1
whilst for p>1
00 p/2
(;f—l)—”cpE ((;(Y, —a)’x(v > 1)) ) <
<E(S, - av /) < B(X*") <
00 p/2
< CpE (Z(Y, —a))?x(v > i)) ) ,

=1

where ¢, > 0 and Cp, > 0 are constants depending only on p.

b) For p > 2 the random variable S, — av belongs to X, if and
only if the ezpectations E(| Yy |P)and E(vP/?)are finite. In this
:ase we have the tnequality

eplo?EWP?) + E(| Y1 — o P)E(v)] < E(| Sy —av |P) <
< E(X'?) < Cylo? E(vP?) + E(| Y1 — a P)E(v)].

Here ¢, > 0 and Cp, > 0 are constants depending only on p.
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Proof. a) The differences of the stopped martingale (X, %)
ared; = (Y1—a)x(v >1) =Y;1—aq, and d; = (Yi—a)x(v > 1), 1 =
2,3,... . By the Burkholder-Davis—Gundy inequality
( see [1, Theorem 15.1] ) for arbitrary p > 1 we have

0o p/2
¢y ((Z(Y‘ —a)’x(v > i)) ) < E(X*'?) <

0o p/2
< CpE ((Z(Y, —a)’x(v > i)) ) ’

=1

where ¢, > 0 and Cp, > 0 are constants depending only on p.
Consequently, X* € Lp, i.e. S, —av € },, if and only if

oo p/2
(*) E ((Z(Y, —a)?x(v > z)) ) < +o00

t=1

holds. In this case for p =1

=1

oo r/2
E(lS,—av|P) < E(X*)<C,E ((Z(Y, —a)ix(v > 1)) ) ,

whilst for p > 1 by Doob’s maximal lemma and by the above
inequality

oo p/2
E)7eE ( (_Z(x- - o)y 2 i)) ) < B(| S,-av F) <

0o r/2
< B(X) <GB ((Zm o)y > i)) ) .

1=1
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b) Let us now turn to the case p > 2. Then by Theorem 1
and Theorem 2 of [3] the inequalities

p/2
cp{E ((ZE —a)? | Fio))x(v > z)) ) +

+Y E(Yi-elP x(v > i)} < E(| S, - av |P) < B(X*?) <

p/2
< C,{E ((Z E((Y; _)x(v > z)) ) +

+ZE Y; —alP)x(v > 1))}

are satisfied, where ¢, and C, are positive constants depending
only on p. From this we get

ep{E(| Yi—a [P)E(v) +oPE(WP/?)} < E(| Sy—av P) < E(X*7) <

< Co{E(| Y1 — a P)E(v) + o?E(W"/?)}.

Here we have used that (Y; —a)? and %_; aswellas |Y; —a|P
and x(v > 1) are independent. Since E(v) < E(v?/?) and o? <
E(| Y1 — a |P), the above inequality means that S, — av belongs
to ¥, and

ep{E(| Y1~ a P)E(v) + o?E(W?/*)} < E(| 5, —av |?) <
< Cp{E(| Y1~ a|P)E(v) + oPE(v?/?)

if and only if E(v?/?) < +o0 and E(| Y3 |P) < +00. O

REMARKS. Part b) of Theorem 1 gives an exact estimate
for E(| S, — av |P), where 2 < p < +o00.
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The following remarks and observations help us to use the
necessary and sufficient condition (*) in case when 1 < p < 2.

1/ If the necessary and sufficient condition (*) is satisfied for
some p, 1 < p < 400, then necessarily E(| Y; |P) < +o0. In fact,
under this condition

E(|Yi-a]?) = E(((% - o)x(v > 1))"/?) <

oo p/2
<E (E(Y,- —a)%x(v > i)) < +oo0.

1=1

This generalizes a result of [9] where the condition E(v) < +o0
is also assumed.

2/ The necessary and sufficient condition (*) is satisfied if the
expectations E(| Y7 |P) and E(v) are finite. In fact, in this case

00 p/2
E (E(n—a)zx(uzﬂ> <

SE(ZIY:'—ale(VZi))=

=1

—E (Z |Y.-—a|") = E(| Y1 - a P)E(v),

where we have used the fact p/2 < 1 and the equation a/ of Wald.
Since | S, — av |< X*, we deduce from part a) of Theorem 1 that

E(| S, - av [?) < E(X*?) < C,E(| Y — a [P)B(v)

with the same constant C, as in part a) of Theorem 1.
3/ If 6> = E((Y1 — a)?) is finite then by the concavity in-
equality (see [6, Theorem 1])
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oo p/2
(5)/°E ((Z(Yi—a)zx(u > z')) ) <

1=1

oo p/2
<E (Z E((Y: —a)® | Fi—1)x(v > i)) < oPE(vP/?).

Consequently, (*) is satisfied if E(v?/?) < +o00 and 0% < +o0. In
this case we have

E(| 8, - av ) < (B)P2E(w"/?)0?Cy,

where C,, is a constant depending only on p. A generalization of
this remark will be given in Theorem 4.

4/ Suppose that P(| Y; —a |> K) = 1, where K > 0 is a
constant. Then

oo r/2
E (Z(Y,- —a)?x(v > i)) > KPE(VP/?),

1i=1

Consequently, if (*) is satisfied and P(| Y1 —a |> K) =
1, K > 0, then necessarily E(v%) < +oo.

5/ From 3/ and 4/ it follows that if P(K; >| Y, —a |> K;) =
1 with some constants K, > K; > 0, then

oo

p/2
K?E(W/?) < E ((Zm —a)%x(v 2 ,-)) ) < KE(*1?).

i=1

Therefore in this special case the necessary and sufficient condition
(*) is equivalent to the condition E(v?/2) < 4oo0.
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6/ Burkholder and Gundy [8] established the following two-
sided maximal inequality: let 0 < p < 2 and suppose that E(Y;) =
0, Var Y; =1, E(| Y1 |) = d > 0. Let v be a stopping time with
respect to the increasing sequence of o -fields {7,}52 ; satisfying
P(v < +00) = 1. Then

¢paE(P1?) < B(X*?) < C,E(v"/?),

where Cp, > 0 and ¢, ¢ > O are constants. Remark that the
constant ¢, g on the left-hand side depends also on d = E(| Y; |),
whilst Cp, is universal, depending only on p. Especially, it follows
that for0<p <2

E(] S, — av |P) < CLE(v?/?)

and for 1 < p < 2, by the maximal inequality of Doob ,

-p
p
(p—— 1) cp,dE(uP/2) < E(I S, —av |)P) < CpE(Vp/Z).

Note that Example 8.2 of [8] shows that for 0 < p < 2 there is
no two-sided maximal inequality with an absolute constant ¢, on
the left-hand side.

7/ The a.s. limit S, — av of the stopped martingale {Svan —
a(v An)} can belong to L, without the conditions of Theorem 1.
Let us consider e.g. the first recurrence time v to the origin in
a symmetric random walk, where P(Y; = +1) = 27!, We then
trivially have P(v < +00) = 1 and S, = 0. Consequently,
E(| S |P) = 0 for every p > 1. However,

X* =sup | Suan |
n>1

does not belong to L, which would ensure the uniform integra-
bility of {Suan}. {Suan} does not converge in L, to its a.s. limit
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S, = 0. This follows from Remark 5/ according to which the con-
dition (*) is not satisfied since for every p > 1 we have E(vP/?) =
+o00.

Theorem 1 and the assertions below ensure that the stopped
walk centered at the mean converges to its a.s. limit in L, by
stating that under the conditions of the assertion X™* € L,. This
fact, by means of the Doob maximal lemma, implies that
E(| S, —av |P) < +oo.

3. The concave case

For 0 < p < 2 it is not possible in general to obtain a two-
sided inequality for E(| S, — av |*). In this connection we refer to
(8, Example 8.2] . See also Remark 6/ after Theorem 1. How-
ever, an upper estimate can easily be given by using a result of
Y. S. Chow and H. Teicher (see [5, Chapter 11, Section 3, Theo-
rem 3]), which is a modification of a theorem of Burkholder (see
(1, Theorem 20.2]) .

Let ®(z) be a concave Young function, i.e. of the form

z

8(z) = /cp(t)dt, >0,

0

where ©(t) is right-continuous, nonincreasing and nonnegative so
that its integral is finite for every z > 0 with ®(0) = 0. Let
further (X,, 7,) be a martingale with the difference sequence dp =
0,dy,dz,... . For a € [1,2] let 54(X) be the so called conditional
variation of order a of the martingale, i.e.

Z (I d: |* | %))

The result of Chow and Teicher is now the following:

l/a
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Let ® be a concave Young function and a € [1,2] a fixed
number. If (X,,#,) is a martingale with the difference sequence
do =0,d,,ds,...such that E(| d; |*) < +oo for 1 =1,2,..., then
there exists a constant A = A, such that

E(3(X™)) < ALE(®(sa(X))),
where

A CAME)
1=1

We are now able to formulate our

Theorem 3. Let ® be a concave Young function and suppose
that for some o € [1,2] the ezpectation My = E(| Yy —a |%) ts
finite. Consider the stopped martingale (Syan —a(v An), %,) and
its a.s. limit S, — av. Then there ezxists a constant A, such that

E(8(X**)) < Aq max(1, Ms)E(2(v))

and the same inequality holds for E(®(| S, — av |%)).

Proof. We only have to use the above theorem of Chow and
Teicher and to note that in our case

Z Yi—a|| Fio)x(v Zi)::Mazx(uzi):Mau.

It follows that
E(2(] Sv — av |%)) < E((X™*)) < AaE(®(Mav)).

Note that for arbitrary a > 0 we have ®(az) < max(1,a)®(z). O

Theorem 4. Let 0 < p < a < 2. Then there ezists a constant
A = A, such that

E(|S, —av |P) < E(X*?) < AoME/*E(WP/®), 0 € [1,2].
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Proof. Consider the concave function ®(z) = zP/* and apply
the preceding theorem. O

4. The moments of S,

By means of the results of Section 2 we now improve some
results of paper [9].

Theorem 5. Let Y1,Y2,... be nonnegative 1.1.d. random
variables and suppose that P(Y7, > 0) > 0. Let v be a stopping
time with respect to the increasing sequence 7, = o(Y1,...,Yy,),

n > 1, of o-fields which satisfies P(v < +o00) = 1. Consider the
corresponding stopped random walk, i.e. let So = 0 and

n
Suan =Y Yix(v>1i), n=1,2,... .

1=1
Let S, denote the a.s. limit of the random walk. Then for p > 1
the moment E(S,*) s finite iff E(YF) < +o00 and E(v?) < +oo.
Proof. Suppose E(S,?) < +oo. Since S, > Y7 > 0 we
have E(Y}) < +oo. From this it also follows that the sequence
(Suans Fn), m > 1 is an integrable nonnegative submartingale
whose a.s. limit is S, . SyAn converges to S, increasingly as
n — +o00. Consequently, by the monotone convergence theorem,

lim E(SPrn) = sup E(SfA,) = E(Sf).
n>1

n—+4o00

By Theorem 1 of [10] this is equvivalent to the conjunction of
the following two conditions

sup E(| Suan —a(v An) [P} < 400
n>1

and E(AE)) = a?E(VP) < 400,
where a = E(Y7) > 0 and

Suan = [Svan —a(v An)]+a(v An) =M, + A,
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is the Doob decomposition of the submartingale (Syuan, %), fur-
ther

Ao = lim A, = av.
n— o0

It follows that E(v?) < +oo since 0 < a < +oo. This, together
with E(Y]) < +oo proves the necessity part of the assertion.

Let us now turn to the sufficiency part. First consider the
case 1 < p < 2. By part a) of Theorem 1 we have

E(|S,—av|f) <
oo

p/2
< E(X*?) < C,E (Z(Y —a)?x(v > i)) <

< GE (Z| Yi—alPx(v> i)) =CE(| Y1 - a|")E(v),
1=1

since p/2 < 1 and the random variables ¥; — a and x(v > 1) are
independent. Here C, > 0 is a constant depending only on p.
By our assumption the right-hand side of this inequality is finite.
Consequently, by the Cp-inequality,

E(S?) < 2P"YE(| S, — av |P) + a? E(P)] < +oo.

The case p > 2 can be treated similarly by using part b) of The-
orem 1. The moment

E(| Sy —av lp)

is finite if and only if so are E(Y}) and E(vP/?). The later is
implied by the assumption that E(vP) < +oo. Therefore, again,
by the Cp-inequality,

E(s5) <2°7'[E(| Sy — av [) + E(vF)]

and now the right-hand side is finite by assumption. O
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REMARK. In Theorem 2.1 of [9] the necessity part of this
assertion is only proved.

We can also improve the assertion of Theorem 2.4 of [9].

Theorem 6. Let p > 1 and suppose that E(Y1) = 0 . Then

Sy, € Xp  implies that E(| Y1 |P) < 400 . Further, for p >
2 the condition Sv € Ny 1s equivalent to the conjunction
of the two conditions

E(| Y1 |P) < 400 and E(v?/?) < +oo.

Proof. Generalizing the assumption on E(Y;) we suppose
that E(Y;) = a is finite. We prove that for p > 1 the condition

E(| Sy —av |P) < 400
implies that E(| Y7 |P) < +oo. In fact, by the Burkholder-Davis-

Gundy inequality (Theorem 1. a) and the maximal inequality of
Doob we have

oo p/2
ep(—2=)7E (Zm—a)zx(uzi)) <

p—l 1=1
< E(|S, - av |P) < +oo.

Now by the nonnegativity of the summands

(p”l) PE(|Yi—a ) <

) p/2
< cp(p (Z —a)’x(v > 1)) < o0,

which proves that E(| Y; |P) < +o0, since ¢, is a positive constant.
The second part of the assertion is proved in Theorem 1. b). O
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REMARK. Note that the first part of the assertion improves
Theorem 2.4 of [9], where the authors suppose in addition that
E(v) < +o00. Taking especially E(Y;) = 0, we get the assertion of
these authors without supposing E(v) < +o0 .

The following theorem is also an improved form of Theo-
rem 2.2 of Gut and Janson [9].

Theorem 7. Suppose E(Y;) ts finite and E(Y;) # 0. Then
for p > 1 the condition

S, —av € N,

ts equivalent to the conjunction of the two conditions
E(] Y1 |P) < 400 and E(v?) < +oo0.

Proof. a/ We first consider the case p = 1. The condi-
tion E(| Yy |) < +oo and E(v) < +oco imply by Wald’s identity
that E(S,) is finite (which, of course, implies E(| S, |) < +o00).
Conversely, an argumentation of Blackwell, used also by Gut and
Janson in their paper, shows that E(Y;) #0and E(| S, |) < +o0
imply the finiteness of E(v). There is another proof to this fact in
the book [11] by A. A. Borovkov.

b/ Consider now the case 1 < p < 2 and suppose that
E(| Y1 |P) and E(vP) are finite. Then by the Cp-inequality

E(| S, ) <2°7'[E(| Sy — av |P) + E(v")]

and we only have to prove that E(| S, — av |P) is finite. By
Theorem 1 a).

E(1 S, — av /) < E(X*®) < GoB((Y (¥ - o) x(v > )P/?) <

=1
[o o]

<GE(Y |Yi—a P x(v24) = GB( Yy — a ) E(v) <
=1

< CpE(| Y1 —a |P)E(vP) < +co.



ON WALD-TYPE INEQUALITIES 21

Here we used the fact that £ < 1 and that Y; — a and x(v > )
are independent. C, > 0 is a constant depending only on p.
Conversely, suppose that E(| S, |P) is finite. Then E(S,) is finite
and we proved in the case p = 1 that this fact together with
E(Y1) = a # 0 implies that E(v) is finite. It follows as above that

E(| S, —av |P) < CpE(| Y1 —a |P)E(v) < 400,

since by the preceding theorem E(| Y7 — a |P) < +o00. Conse-
quently, by the Cp-inequality

|a|? E(wP) < 2P [E(| Sy — av [P) + E(| Sv |P)]

and the right-hand side is finite.

¢/ Let us now turn to the case p > 2. Suppose that E(| Y7 |P)
and E(vP) are finite. Then, again by the Cp-inequality

E(| Sy IP) <2P7'[E(| Sy —av [P)+ | a [P E(vP)]

and the finiteness of the first term on the right-hand side follows
from Theorem 1. b) by the fact that E(v%) < E(v?) < +oo and
that E(] Y7 |P) < +o0.

Conversely, if E(| S, |P) is finite then E(S,) is finite and
by part a/ of this proof it follows that E(v) < +oo. From the
preceding theorem it also follows that E(| Y3 |P) < +oco. In order
to show that E(vP) is also finite we proceed as follows. For r > 2
such that p > r the finiteness of E(v"/2) and of E(| Y7 |") by
Theorem 1. b) ensures that

E(| S, —av|") < +oo.
From this by the Cp-inequality we deduce that

la|"E(W") <27 YE( S, —av|)+ E(| S, |")] < +oo.
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This idea helps us to prove that E(vP) is finite. For this purpose
let k be the smallest positive integer for which 1 < p-2~% < 2.
Then .

E(|S, —av|P? )

is finite since 1 < p-2~% < 2 and by part b/ of the present proof
E(| Sy —av P?7) < CprB(| Vi — o [P27) B(v)

and the right-hand side is finite. Consequently, if E(| S, |P) is
finite then so is .
E(| S, —av |P? ).

From this it follows that
.2~k 2k
|a|P*  E@WP* )< +4o0
and since a # 0 , we deduce that
E(w*?™") < +oo.

Since k is the smallest integer for which 1 < p-27% < 2 | we see
that p-2~%t1 > 2. Consider now the moment

)

2—k+1

E(| S, —av |F
This is finite, since by Theorem 1. b)

E(|S, —av P <

< Cpp-1[(@F YEWPT) + E(| Yy - o PP E(w)]

and the right-hand side is finite since we proved that E (V”’z_k) <
+ooand E(| Yy —a [P2""") < E(| Y1 — a |P) < +00. From the
finiteness of

E(l Sy —av Ip.z—k-ﬂ),
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by the Cp-inequality we deduce again
E(Vp'z_k.n )’

since a # 0. If k —1 > 1, we proceed similarly as above. We prove
thus that Crea
E(|Sy—av|P? )

is finite. This follows from Theorem 1. b) since

E(|S, —av P77 <

S Cp,k~2[o_p.z—k+2E(Up,2—k+l) + E(| Yl —a |p.2—k+2)E(V)]

and the kright-hand side is finite becausl(i we have just proved that
Ewr?" )< +ooand E(| Y, —a|P? ") < 400, since k—2 >
1. From this we deduce by the C,-inequality as above that

E@P?™"") < +o0.

If K — 2 > 1, then we continue this procedure to show that

—k+3

E(WP? 7)) < +oo.

In such a way we arrive at the finiteness of E(v?2”') . By the same
procedure as before we finally arrive at the conclusion E(vP) <
+o00. 0
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