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Abstract. New algorithms are proposed with corresponding error esti-
mations for finding the minimum f* of an arbitrary convex function f: R* -~R*
(having a known Lipschitz constant over a ball of R” which is known to con-
tain at least one minimum point of f). It is supposed that — at each step of
the algorithm — the value of f and one of its subgradients can be evaluated
(at an arbitrary point of R?). These algorithms represent ways of acceleration
and stabilization of the “ellipsoid method” (due to Shor, Yudin-Nemirows-
kii, 1977). The main part of this paper is devoted to the construction and
error estimation of a stabilized version of this method which turns out to
share all the positive features of the original method and allows to reduce
significantly the accuracy required for the computations and function (gra-
dient) evaluations. For n = 1 an algorithm is obtained whose convergence
rate is 9713, i. e. less than 1/2.

1. Introduction

The ellipsoid method has been proposed by Shor (see [2]) for the solu-
tion of the problem of unconstrained minimization of convex nonsmooth
functions. The same method has been proposed also in [11] as an “implemen-
table” version of the method of centers of gravity, see e. g. [8] and our re-
mark at the end of Section 3.

Later L. G. Khachian [4] used this method in order to prove that linear
programming problems

(1.1) inf {{c, x)| Ax=b}, x, ceR?*, AcR™" hcR™

with rational coefficients can be solved in “polynomial” time (in the number
of digits in the coefficients). Roughly speaking, Khachian showed, see. e. g.
[10], that if the rational coefficients are transformed into integer ones and

Lo:= 2 Zlogy(|Ayj| + 1)+ 2 logy([b | + 1) +logy(nm + 1),
ij
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then O(n3(n + m)L,) arithmetical operations (+, —, X, <,V )suffice to find
the exact solution, if it exists (it is assumed that all such arithmetical opera-
tions are kept exact in using no more than 23L, binary digits before and
38nL, after the decimal point). This opened a way of constructing “polyno-
mial”” algorithms for a number of combinatorial optimization problems.

A serious drawback of the (originally proposed) algorithm lies in its
instability in the following sense. The volumes of the succesively construc-
ted ellipsoids — which serve as sets of localization of possible minimum po-
ints — tend to zero, their diameters however may tend to infinity which le-
ads to bad conditioning (oscillations) long before the minimum is reached
within sufficient accuracy (for large values of L,), see (2.15) below. This in-
stability has been noticed, i. e. observed in computer tests by many rese-
archers, and has lead — after a very enthusiastic beginning — to an exag-
gerated discarding of the original idea on which the method is based. Impli-
citly this instability is behind the enormous accuracy, const-exp(—nL,),
required for the arithmetical operations in the original method.

We shall see that by finding a remedy for this “internal” instability
other, “external” instabilities can also be cured (mildened) and a realistic
algorithm with error estimation can be obtained.

In fact there are other reasons for not proposing the ellipsoid method for
the solution of large (n>1) linear programming problems: it is slowly con-
verging (when compared e. g. with the simplex method, for problems where
m is not too large); it is not clear whether the method can easily incorporate
additional (e. g. “sparsity’’) structures (decomposability) being often present
in such problems, or not.

For unstructured problems with many constraints, m>n, or more ge-
nerally for the solution of the general convex programming problem,

(1'2) inf {fO(x)lfl(x)SO? i = 172) )m}':f(,)k)

where the functions f,, f;, ..., f,, are assumed only to be convex over R",
the stabilized versions of the ellipsoid method (see below) seem to be competi-
tive (for not too small values of n). More precisely this can be expected for
such classes of problems where the values and at least one of the subgradi-
ents of each function f,, fi, ..., f,, can be computed exactly at an arbitrary
point of R”. One can use the method of exact penalty functions (see Section 2)
to transform (1.2) into a similar problem without constraints, i. e. when we
have only one function f, = f, m = 0.

In Section 2 we present the description and an error estimation for a
new, externally stabilized version of the original method (a new method of
acceleration will be given in Section 5). The internal stabilization method
and its estimation are presented in Sections 3 and 4. We show that, by the
introduction of suitably constructed stabilization steps, the instability of the
original method can be removed so that essentially the same number of arith-
metical operations (and function evaluations) are needed as for the original
method to reach a prescribed (small) uncertainty e in the value of the mini-
mum. The accuracy required when performing these, as well as the measure-
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ments of g(x)€df(x) is not “greater” (for ¢ small enough) than ¢°n=*.const
(thus is“polynomial” in ¢, n and independent of m, the number of constraints
in (1.1)), this is one of the main results of this paper, see the end of Section 2.

The second (numerical) problem — the solution of which yields the basis
of our internal stabilization method — consists in constructing (approxi-
mating) an ellipsoid of (minimal) small volume and small diameter contain-
ing the intersection of a ball (ellipsoid) and an (other) ellipsoid. The latter
problem has independent interest in other areas e. g. for the approximation
of reachable sets (or sets of localization) in control systems with bounded
gontrols (resp. disturbances). In the paper [13] test results demonstrate the
gain from stabilization.

Remark. If the values of f can be measured only within a given accuracy
g (and the values of grad f are not accessible directly) then the straight-
forward generalizations of the ellipsoid method, see [11, Ch. VIII], exhibit
an other instability : one with respect to ¢, (this instability is different in its
nature from the two instabilities studied here). For the construction of met-
hods with stability constants (the ratio of the minimal achievable uncer-
tainty in f* to ¢, for N—<) arbitrarily near to one see [1]. In Section 5 we
present a new algorithm for the solution of the one-dimensional problem whose
rate of convergence is 9713, i. e. less than 2%, This algorithm shows the way
(by the more full use of the available information, i. e. measured values of f
and g€df and the convexity of f) for the construction of “‘ellipsoid”’ algorithms
essentially faster than the original ellipsoid algorithm for arbitrary values of
the dimension n.

2. Description of an accelerated version of the original method and an error
estimation for it

We shall deal with the problem of finding the minimal value f* of a
convex function f:R*—~R! under the assumption (initial information) that
a ball of (finite) radius R contains at least one extremal point of f, i. e. that

2.1)  f(Ax+(1=2)y)=2f(x)+(1—A)f(¥), for all x, yeR", 0=2=1
(2.2) G N X*(f) 70, where Gg: {x| x| <R, x€R7},
(2.3) X*(f) = {x1f(x) = f*, xeR™Y, f* = inf {f(x)|xeR"}.

We assume also that a Lipschitz constant L is known for f over the ball
Gre,, Where b, =1 is a constant defined below, see (2.18)

(24) |fC) =) |=Llx—yl|, for all x, y € Gro,.

The class of convex functions satisfying (2.2) and (2.4) will be denoted
by F(Gg, L). When not stated otherwise, norms of vectors resp. symmetric
matrices will be always the Euclidean resp. spectral ones.

The problem is to estimate the value of f* based on the values of f(x;)
and g(x;)€af(x;), i =1, ..., N, which should be computed sequentially.

11 ANNALES — Sectio Computatorica — Tomus VII.
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By definition, the knowledge of f(x) and g(x) at a pointx = x;,j =1, ..., N
tell us that

(2.5) J(@)=f(x)+ {g(x). z—x), for all z€ R™.
The aim is to construct an algorithm for the sequential choice of the x;’s,
i=1,...,N,sothat — for a prefixed accuracy ¢ — the inequality
e=&(N, f):= inf {|i*— min f(x;)|h€ F(Gg, L), h(x;) = f(x)),
l<i=<N
(2'6) g(xj)eah(xj)7j = 1) ey N})

is satisfied with a possibly small value of N.

For a more detailed definition of algorithms for function minimization
we refer to [8], [11]. Here we shall allow to use (i. e. know) — at each step
k of the algorithm, when x,., is chosen — the values of R, L and ¢; what is
however more important: we shall not need to keep in memory all the com-
puted values f(x;), g(x;), 1=j=k, and we shall have to perform only O(r?)
arithmetical operations in each step.

It is known that the problem (1.2) can be “reduced’” to the problem of
unconstrained minimization of the convex function (an exact penalty func-
tion)

@) f():= Py(x) = f()+N" max {0, £i(x), .., fm(X))} XERT,

when N’ islarge enough: N’ =K (if K < -, which is a condition of well-posed-
ness for the problem (1.2)), where

—K: = inf YAOZYO oy —int (@70 <h i = 1, ...m),
=0 A

see e. g. [5, § 8]. We are not interested in studying here the above reduction
(which amounts to the proper, sequential guessing of K) we remark only
that the problems (1.1), (1.2), (1.3) and (1.7) are — to some extent — equi-
valent (because each convex function is the supremum of a family of linear
functions).

The idea of the ellipsoid method is to confine the set GxN X*(f) into
successively constructed ellipsoids E; of geometrically decreasing volumes
Ey = Gg,x, = 0,E; = E(x;, A),i = 1, ...,N,where

E(X, A) = {Z|<A_1(Z—-X), Z—x>$ 1}’ x€R", 0<A* = A¢R™".
Note that — denoting by AY2 the positive square root of A —

n
7—

E(x, A) = x4 AY2G,, det AV% = vol (E(x, A))/k,,k, = ——2——
1*[3 +1 ]
2

where G, is the unit ball in R?, vol (K) is the volume of K.
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Here — in order to provide an accelerated version of the original method
— we shall construct E, ,, (i. e. x4, and A, ,) based on the knowledge of E,

& = 8(%)€0S(xy), and f(x;0),

where
(2.8) J(xyp) = min {f(x,)|0=j=k},
so that either
n n-1 1
(2-9) Msh s = n (nz__ 1) 2 <e 2(n+1)
vol E,, " +1
or
(2.10) (AL g(xy), g(x)) = &

(in the latter case the algorithm stops at x,).

Below we shall choose ¢, in a special way depending on ¢y, ¢, L and R,
(for g4 0, we shall introduce an additional stopping criterion), and the analy-
sis of the implications of (2.10) will be crucial.

(2.11) Let Dy =(f(x)— lfji:kf(xj))@m AgyV2
(note that D, =1 by the assumption (2.2), see below),
D,yn+1
(2.12) x4yt = xk—ﬁ'AkgIAAkgk’ g V% (xo = 0, Ay = R%)
2(1 _—_ N2 *
(2.13) Apyy: = n*(1 —D}) [A ___ADyn+1) _ Argi(Ag) J
n—1 (n+1)D+1) (Ao 8

The following lemma shows that E,,; = E(xX,+,, A+1) Will be a set of locali-
zation for X*(f)NGg (corresponding to the informations gathered till step
k+17) and that

n-—1

= h(1-D)(1-Dy) * .

Vol (Ey41)
vol (E,)

We note that the original method, see [2], [3], [11], is obtained when we
set D, =0 in the formulas (2.12), (2.13). The appearence of the expression
(A8, &) in the denominators of the update formulas dictates the introduc-
tion of a stopping criterion like (2.10) in any “‘stable’ realization of the al-
gorithm: we shall see that the choice (2.10) has special advantages.

Lemma 1. Let x, g be arbitrary vectors in R, 0<A = A*¢R**" and
O=d=<1

E’ = {z|(g,2)=(g x) —d(g, Ag)'*} N E(x, A),
11*
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then E’ can be included info the ellipsoid E(x, A")

X' = x- dn+1 i
n+l V(Agg)
A= nz(l-—dz)[ 2(dn+1) Ag(Ag)*]
(n+1)d+1) (g Ag)

so that
n-1

vol (E(x', A%) = vol E(x, A),(1—d)(1—d?) % .

In fact E(x’, A”) is the ellipsoid of smallest volume containing the set E’.
For completeness we reproduce here the simple proof given e. g. in [10].

Proof. One can assume that A is the identity matrix, i. e. E(x, A) is the
unit ball, then one has to compute the minimum of v—w—( -1 i, e, the maxi-
mum K* of the convex function v2w?*~2 = k(v, w) under the constraints
(where h corresponds to the location of the centre of the new ellipsoid)

vi(h—t2+wi(1—12)=<1, for all 1=t=d.

One has to choose 0<h<1 so that k* = k*(h, d) becomes maximal. This re-
sults in

n—1

k¥(h d) = (1—h)(1 )~ [ [h dT]

h*=dn+1 P n+1 w*:[ nz—1 2 q
n+1’ n(1—d)’ n%(1 — d?)

It is interesting to note that Lemma 1 is true for all values 1 =d=—n"1,
and it is true for d = —n~?! that the ellipsoid E(x’, A’) is identical with
E(x, A).

Now Lemma 1 is used in the derivation of (2.11) — (2.13) based on the
observation that the computation of f(x,) and g(x,) allows — by the convexity
of f, see (2.5) — to localize the set of possible minimumpoints (within Gg)
into the intersection

E(x, A)N{z](e(xi), 2— %)= — (f(x;) - ogi:k f(x)))-

Notice that the original method is not modified in steps k where f(x,) =
= min {f(x;), l=j=k}. One could, however, propose an acceleration for
this case also by using Lemma 1, r-tlmes for the intersections

(2.14) E(xf™t, Al N{z|(g(xi™), 2 —xi 1)y = f(xf) — mm f(x])

i= l

where x§ = x, = X, A, = A) = A;_,, and x} | = 1, ..., r are points
from among x,, ..., X;.
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For example one could set r = 1 and define x} = x;», where
Sf(xjs) = mjin {fGe)1fOep) #= (i)}

We shall return to these possibilities in Section 5.

The instability phenomenon referred to in the introduction can be ob-
served now easily. Suppose that for all values of k, g(x,) has the same direc-
tion (this can happen even for a strongly convex quadratic function). Then
the matrixes A, have linearly growing (spectral) norms

(2.15) 1A = [

2 k
”—1] k=12 ...,

n—
provided that D, = 0 in all steps (which can happen e. g. for a function f =
= max (I}, ), where [;, i = 1, 2 are linear functions which are equal to a con-
stant, f*, on an (n— 1) dimensional subspace of R").

In order to provide an estimate for the error of the algorithm, i. e. for
e(N, f), see (2.6), we need the following lemma.

Lemma 2. Suppose that a (nondegenerate) ellipsoid E = E(x, A) is
known to contain the set X*(f)NGg and let 2€ E be a point where f(2) is known
and provides a lower bound for the values of f in Gg\E, then

1
nn/2

(2.16) f(2)— f*=2LY4 (A)y=2L(k;*vol E)*, k,=———,
n
1" -
[2 * 1]
holds if 2,(A), the smallest eigenvalue of A, is smaller than R?/4 (here k, de-
notes the volume of the unit ball in R").
Before the proof we note that E = E(xy, Ay), 2 = Xy provide — for all
values of N — instances for which the conditions of Lemma 2 are fulfilled.

Proof. Let x* be a point in X*(f)NGg. Since x*¢€ E, there exist two po-
ints w, and w, on the boundary of E such that x*¢ [w;, w,], a segment in the
direction of an eigenvector corresponding to the eigenvalue 4,(A) and

[wy—wyl|=<d = 2 2,(A). .

If at least one of these two points, say w,, belongs to Gy, then — becau-
se of f(W)=f(z) —
(2.17) f@—f*=fw)—f(c*)=L|w,—x*||=Ld.
(2.16) is proved. Now suppose that w, and w, do not belong to Gg, we shall
construct two points in Gg, w§ and w¥ such that |x* —w¥||=d and either

w¥ or w¥ do not belong to the interior of E. For this let — if ||x¥|| 2-5 -

X' = x*[l— d ] wk: = x’+id—w1_w2 , W¥ =
2| 2 [wm—wy
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VI P v
2 [wy—wyl

If |x*||=d/2, then — whenever d<R — already either w; or w, belongs to Gg.
This ends the proof, because either f(w¥) or f(w¥) is then not smaller than
J(). O

In order to give an error estimation for the algorithm (2.10)— (2.13) we
have to formulate a condition which is in close connection with the instability
phenomenon mentioned above.

Condition B. Let us suppose that — for some constant b, —
(2.18) |All=b2R% Kk =1,2,...,(A, = R2])

holds.

In fact the internal stabilization procedure described in Section 3 gua-
rantees that this condition will be satisfied. We prove that b,=<500 can be
achieved for all values of n=6, as well as b, < 130 for sufficiently large values
of n. In fact it seems to be true that the value of b, can be set not greater
than 20 without changing the main order relations for the complexities (i. e.
the effectivity) for all value of n. We have chosen b, = 500 in order to get —
in a simple way — almost the same estimations for the “‘complexity” of the
modified method as for the original method.

A consequence of this condition and (2.2) is that

(2.19) Ixell=<(8,+ R, for k =0, 1, ... .

Now if for some value of k the inequality (2.10) holds then 4,(A,)||g.|*=
=g, where A,(A) denotes the smallest eigenvalue of the positive definite
matrix A, therefore either

— L —
(2:20) W(A) =X e or lglr=2Y e,
L R
The proof of Lemma 2 shows that 1,(A N)g%}/ &, implies that

&N, NH= 2LY2,(A N)= 2V LReV/A

(one can take |w,—w,|? = 44,(A,). Similarly 1|gN|]25%}/e—1 'implies — if
(2.19) holds — that
| f(xn) = f*| <VLR(2+bp)el’.
Thus we have proved the following theorem.

Theorem 1. If Condition B is fulfilled and e, = 0, then the error of the
algorithm (2.10)— (2.13) can be estimated by

N
(2.21) (N, f)=LR max {2¢ m20+D  gl/4(24 b )(LR)~12).
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If the desired (final) accuracy e is prescribed i. e. we have to guarantee
e(N, f)<e, (with a possibly small value of N), then we choose ¢, and N so
that the two values in the bracket {i} in (2.21) be equal to ¢(LR) "}, i. e.

(2.22) e = e(LR)~2 (2+b,) 4.

It is however not true that the estimation (2.21) remains valid (even
only in its essential features) if all the storages, calculations and subgradient
evaluations in (2.11)—(2.12) are made within accuracy &, = ¢, only. In order
to analyse the “‘external stability problem” we assume that the components
of the vectors g(x)€df(x) can be computed only within (absolute) accuracy &,,.
We also assume that the components of A, x, (k=1, 2, ...) are stored within
the same (absolute) accuracy; this in fact will not mean an essentially more
severe restriction for ¢, (as a function of (¢, R, L, n)). The arithmetical ope-
rations +, —, X over pairs of numbers a, b both not greater than 202R2L
should be performed within the same (absolute) accuracy ¢,, while for divi-
sions a/b this is required only if a=b% R*L2and b=0,5 V¢,. Finally we assume
that for b2 R2L?>a=0,5V, the value of Ya is computed within absolute
accuracy 4-1e7Y2 (262R2L2n + Ly n)e,. One could “normalize’” the problem by
the transformation f*(x): = (LR)~Yf(xR), then L* = R* = 1, ¢* = (LR) %
and a different, simplifying assumption about rounding errors is that the
arithmetical operations can be fulfilled as given above (now with L = R = 1)
and the components of g(x) can be computed within (absolute) accuracy
gL 1. We have kept the values of R, L unnormalized because this better
suits the applications.

Theorem 2. Suppose that we apply the algorithm (2.10)—(2.13) in the
modified form given by (2.30), (2.31), (2.35) below. Then under the rounding
assumptions made above and Condition B the validity of
(2.23) o= b8 n~4k

with a suitable positive value of k assures — for e small enough — that

&(N, f)=e for N=N(e, n, LR): = [zn(”+l)lg 2RL]+1.

€
Here — for arbitrarily given n=6, L, R, one can set b, <500 and
k = k(L, R, n, b,, e)=k(L, R)>0,
ife<e(n, L, R, b,). Specially for L = R =1,
k(1, 1, n, b, &)=k, if e<k,,

Jor some universal constants k, k,> 0.
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From the assumptions made in connection with the normalization f* —f*
we obtain that for e=< LRk, it is enough to assume that

go=610b718 n—4 -9 R-10 g,

The remarkable in the estimation (2.23) is the weak, “polynomial” depen-
dence of ¢, on e and n.

Let’s compare this result with theorem (5.16) in [6] where in essentially
the same situation only an estimation with a term &* on the right hand side
of (2.23) is obtained.

The estimation (2.23) “explains’’ that “overflow” is caused not directly
by the growth of ||A,|| but by the extreme sensitivity of the arithmetical ex-
pressions involved in (2.12) —(2.13) with respect to this growth.

The algorithm of external stabilization

The problem is caused by the inevitable circumstance that — due to the
necessary diminishment of 1,(A,) as k grows — the matrices A, may become
increasingly badly conditioned. We see thus that the condition B requires
(when we try to minimize the value of b,) the maximum that can be required
when we dot not impose any condition of strong convexity on f (since then
X*(f) may be, say, a line segment). Formally the appearance of (A, g, g,)
in the denominators of (2.12)—(2.13) causes the problem.

Here we have to assume that f has a known Lipschitz constant — which,
without loss of generality can again be denoted by L — over the ball of radius
bR around the origin, especially that

(2.24) lg(x)l|=L, for x in Gp,r.

We suppose that the value ¢ of the required final accuracy for the com-
putation of f* is given (i. e. we have to guarantee that ¢ (N, f)=¢, for some N)
and try to determine the accuracy of computations minimally needed for
this purpose.

We shall need several lemmas, which will lead to the proof of Theorem 2.

Lemma 3. Suppose that A and A’ are symmetric positive definite (nX n)
matrices and x and x’ are vectors in R™ such that

(2.25) |As,;— ALl =4(A)p(n), G,/ =1, ..., n),
(2.26) lx—x'|| =<V 2,(A)¥(n),
then

@21y x+—FFD g6 AyoEEx A)2x+

—I—E(O, A,
1 —g(n)n 1+ @(n)n

whenever

(2.28) s(n) = p(n)n<1.
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Proof. First we note that for the Hausdorff distance
d(E(x, A), E(¢', A))=x—x'||+ IV A=V A
holds. Now (2.25) implies that
(2.29) IVA-VAl=V1,(A) ng(n).
Indeed — for arbitrary symmetric positive definite matrices
4|D*— B?|l% = (D + B)XD — B)+ (D — B)D + B)|}=44(D)|D — B|l%,
where ||C||r denotes the Frobenius norm of a matrix C

il = 3 c2,

k,j=n

and we have used the inequality |2, +2,||2=4(2,, 2,y and used a coordinate
system (when computing the F norm ) where D + B is diagonal. Since (2.25)
implies that

A~ A%} =n*23(A)g?(n) and [IC|*=]Cl%
for an arbitrary symmetric matrix C, we obtain (2.29), if we set D = YA,
B =YVA.
Now the inclusions (2.27) follow easily from (2.29) and from
E(A, x)2V(A)G, +x. O

We shall define the updates of x¥ and A} by (see (2.35))

i
2.30 xX¥.10 = Xk (% = 0), 8(0) = —,
(230) fart = Hhaws (= 0) ) = oo
2
(2.31) A%, = [M] Aluy A, = RPI,
1—s(n)

where x;,, resp. A;,, denote the result of the error contaminated computa-

tions (2.12), (2.13) started with x, = x¥, A, = Aj¥, (for an other, possible

choice of A%, , see (2.50). In these formulas we shall set D, = 0 (because the

error analysis for the general case D, =0 is somewhat more complicated and

apparently we have to pay for the acceleration — say when 0=D,<1-9,

for a fixed 6>=0 — by a corresponding decrease of stability depending on ).
Now we shall choose the values of y(17) and ¢(n) so that

E(x§, AH)2X*(/)NGg
for all k. This holds if
(2.32) E(X% 11, A%41) 2E(X 410 Agr)s
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where x,,,, A,4+, denote the “exact” updates corresponding to the starting
values x, = xj, A, = A} according to (2.12)—(2.13). Lemma 3 and the de-
finitions (2.30), (2.31) assure that (2.32) holds, for all k, if (2.25) and (2.26) is
satisfied for A = A 1, A" = Afyy, X = X410, X' = Xj4,. (Note that in (2.32)
the notation does not mean that the sequence of pairs A,, X, are identical
with the sequence generated by (2.11) and (2.12) in the error free case!)
Moreover we shall guarantee that — for a suitable choice of s(n) = s(n, y) —

and with y =%, w =11,

N A
(2.33) ° vol E(xhy, Afy)=e ™D vol E(xt, A})

n2

(2:34) [ A% all = ——l AZIl-

In other words: the stabilized algorithm retains the validity of the two
estimations which are essential for the estimations established in Section 3. 4,
and which imply that (2.18) can be satisfied — even if only (2.33) and (2.34)
hold — with a constant b, depending on y and pu, (b,=500 is claimed here
only for y = 1/2, u = 1,1. When not stated otherwise — as in the next re-
mark — we shall always assume thaty = 1/2, u = 1,1 (of course if we change
N/2in (2.21) to N v, then the value ¢, should be defined correspondingly).

Lemma 4. The requirements (2.33) and (2.34) will be satisfied if we choose
(g0 S0 small that (2.25), (2.26) holds with) — for n=4 —

1
2.35 Y(n) = np(n) = s(n) = ————.
(2.35) () = np(m) = () = 5o s
Proof. This will follow from Lemma 3. From the well-known asymptotics
2 3
log (1+x) = x=2 4 X . xsmall,
2 3
we get for h,, see (2.9) — using a simple majoration technique —
n—1 n n+l1 . n+1l 1
Igh, = 1 - 1 = - -
& T 2 8 q 2(n+1)
1 4n3 —6n¥(n— 1)+ 3(n+ 1)(n— 1)
4(n+1) 24n4(n —1)? ’

therefore (2.33) will be satisfied — in virtue of (2.27) and (2.31) — if for

s = s(n)

* 2 \n 2n

VOl E% 1y s[ (1+5) s[l+s =(1+2s)r <
vol E% < I=s I-s

=exp (4sn)= exp ———
p(dsm) P 8n(n+1)
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and
1 _ An*—6n*(n—1)+3(n+ 1)(n— 1)
8n(n+1) 24n4(n— 1) '
The condition (2.34) will be satisfied also, since
2 2 2 2
(2.36) [1+S "™ podsit [AFES) < 140,12
1-s) n2—1 n2-1,1 I-s

and the latter inequality is satisfied for the choice made in (2.35). O
Remark. It is easy to see that for any value of 0<y < % the validity of

(2.33) and (2.34) with some (smallest possible) u = u(y)>1 can be guarantee
whenever

(2.37) s(n) = o(y)n~?

for a suitable (largest possible) positive value g(yp). The value of b, in (2.18)
whose existence is proved in Section 4 will then depend on vy so that b,(y,)>
> b,(y,), if 1 <7,, see (4.23). Therefore the gain of a factor n=1 in (2.37) with
respect to (2.35) leading to the same gain in (2.23) is largely upset by the cor-
responding growth of b, and the diminishment of the convergence rate con-

stant % to y. This is why we restricted ourselves to the case y = 1/2, when

the analysis of the proof of Lemma 4 shows that —for n- . —we can choose
u,~1, and then lim b, <130 can be ascertained.

n->oco

The proof of Theorem 2. The basic, simple observation is that — see our
analysis in (2.20) of the consequences of the stopping rule (2.10) — at moments
k, when 4,(A,) or |g,|? (thus the denominators in the second term of the right
hand side of (2.13) or (2.12)) become small, the value f(x,) must be already
near to f*. In fact in our stabilized algorithm it may happen that the calcu-
lations will be stopped not by (2.10) but by the equality k = N (¢, n, R, L)
(which is adopted thus as an additional stopping rule), nevertheless the smal-
lest value k = k’ for which f(x,)<f*+ ¢ will be much smaller than N(e, n, R,
L) and then the values of A} and x| for j> k’ may (are allowed to) behave very
irregularly. As this — together with Lemma 2 and 3 — indicates, it will be
convenient to bound the errors of the computation of A,,, and x,, in terms
of the smallest eigenvalue of A,, ;. In order to do this we need the following
simple estimation.

Let &,, &5, =0 be real numbers, a, z vectors in a space R™, ||z| <1, then

atele af| AmaX{Ua) B} oy (s, o), it ep=-L.
B—es B £ ?

We shall apply this lemma for two cases, first for (a, z scalars)
(2.39) a=(Ag)(Ag)p @ j=1,...,n), B = (A8 L)

(2.38)
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when we analyse (2.13), and for the cases (a, z vectors in R?)

(2.40) a= A B = (Ao 8"

when we analyse (2.12). By the meaning of these variables there is no loss of
generality in assuming that

max {|all, 8} = |l

In the case (2.39) the values of ¢, and ¢, can be estimated by the follo-
wing inequalities (under the assumption that the values of (4,); ;, and g, €R”
are known within accuracy ¢, and ||g,(x)l|=L for x€Gy r) — prov1ded that

condition B holds — using repeatedly the Cauchy-Schwartz inequality for
vectors in R*

(2.41) e = 2b2R?L(nL + n+ R262Y n) + 1)eo + 0(3)
e =(L2n+ 2R22LY n + 1)eo+ O(c2).

In the case of (2.40) these values can be estimated by

(2.42) gy = (nL + 132 + R2b2Y n)ey + 0(e2)

e3=< l/ ((LG + szzL}/n + D)eg + 0(2).
&

(One can prove that here everywhere O(eg)=(n2L+ b2R2L + n)? &2, if e,<1.)

In the last inequality we already used the validity of 8=V, (by the stopping
rule (2.10)), and the inequality (where u = 82)

= Vﬂ—]/ﬁs%(u—v), for 0<v=u,
v

together with the assumption needed in (2.38) (and to be guaranteed below
by the proper choice of &)

(2.43) essﬁ, [i. e. Vv =Vu—e= 2 ]

2 VEI
Now in order to that the assumptions of Lemma 3 be fulfilled (for the corres-
ponding data at step k) — according to (2.38) — we have to impose the follo-
wing two conditions, where we use again the condition (2.10) and the ine-
quality (Ay, g, g=2(A)g|?

18 n®R*0pL? max {ef, e5} _ n

(2:44) (2 Dt DEAlgl e 1P
4R?;L maz {e;, e} _( 1/2
®49) (n+ DA,(A)] gl "( n+ 111(‘4")] oo
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Here we have used the equality A,(A;4;)= n "
n+

(2.13) (if D, = 0 as assumed).
The final, important observation is now that — since (because of (2.1.),

we shall obtain the same alternative as in (2.20) — we can assume that in
(2.44), resp. (2.45)

A (4A,) which follows from

(2.46) zf;(A»ngklvzsf’Lfi,
(2.47) A’/zllgkuzzei"[iz—]l’?

Based on (2.41) and (2.42). the inequalities (2.44) —(2.47) lead to the de-
sired connection between ¢, and (¢, n, R, L, b,)). It turns out that the restricti-
ons for ¢,, coming from the error analysis of the updates of 4, are more seve-
re — for fixed the variables — (n, b,,, L, R) than those arising from the error
analysis of the updates of x,, if ¢ is small enough. This follows by noting that
because of (2.41)—(2.47) it is enough to require — say for R=L =1 —
that

b8(n + const) R

(2.48) const o=e1"p(n)

n
and

b4(r’/z + const)
&o
n

const

er r = &P (n).

Here the second inequality is a consequence of the first one if £{*¥(n)=
=e1’p(n)Vn const, (here const = const (L, R, b,).

Now since e{*™"/2 = ¢/* = &3 const, yp(n) = ne(n), the last inequality
will be satisfied if e<const. It is easy to check that (2.23) assures that the
terms O(&2) in (2.41) and (2.42) are not greater than constant (not depending
on (n, ¢, L, R)) multiples of the corresponding main parts if e<const (L, R,
n); the condition e;<8/2 in (2.38) (see also (2.43)) will be satisfied also for all
cases of interest).

Finally (2.23) in obtained from (2.44), (2.46) and the definitions of e,
and ¢(n) in (2.22) resp. (2.35).

Summarizing, the result obtained means that if we apply the algorithm
described by (2.9)—(2.13), (2.30), (2.31) (with D, = 0) and the prescription
(2.22), then — for any prefixed e <const(R, L) and the rounding assumptions
made above —

(2.49) (N, f)=e, holds for N=N(e, n, LR): = [n2(n+ 1) log 2LR ]+ L

&
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Notice that — since there is no simple way to check the validity of the
conditions (2.20), (2.46) and (2.47): it is possible that these conditions are
violated already for some k< N(¢), the point is that then necessarily f(x,)—f*
=e¢. and (2.32) need not be satisfied any more.

Since 4,(A zﬂ Ve, can be assumed, the previous proofs show that we
WAd=7"1a P p

can change the formula (2.31) to

— R —( 1+s 2
(2:50) A = At Vo WAy

1—s(n)

)

where I is the (n X n) indentity matrix.
We have found convenient to write the update formulas (2.12) — (2.13) in
terms of the matrices A,. Instead of this, one could directly update the matri-

ces Aj® Q, for a specially chosen orthogonal matrix Q,, and e. g. by Cholesky
factorization of A,, return to them after the stabilizing steps. Then one can
prove that instead of €'° we can set €. The corresponding formulae and esti-
mations are given in [12]. Speaking about the standard steps of the (ellip-
soid) algorithm, we shall — for brevity — usually refer to only (2.12) —(2.13),
yet everything applies as well for the modifications (2.31) or (2.50) (because
(2.33) and (2.34) hold).

3. The (internal) stabilization method

In this section we present the description of the stabilization method
which consists of several numerical subalgorithms. The tuning of their para-
meters (degrees of approximation) — necessary to obtain an overall error es-
timation for the method proposed — will be specified in Section 4.

First we choose the constant b, (whose value will be specified later). The
modified algorithm now will consist of megasteps s ~s+ 1, during each of such
steps L,,, — L, evaluations of f(x) and g(x)€af(x) will take place and the al-
gorithm proceeds as described in (2.10)—(2.13), till k = L, ,, when

2
3.1) nAknpzbaRzﬁani
is satisfied for the first time after k = L.

In fact it will not be necessary to compute the Frobenius norms at each
step k because one can give a lower bound for Ly, — L,. More precisely: we
shall prescribe the introduction (i. e. application) of a “stabilization step”
automatically after each [(2n%+n)3,105]+ 1 steps (2.11)—(2.13), see below
(3.9), (4.21), so that then ||A,||=b2 R? holds for all p, and here for all n, where
b,=c, is an universal constant, see (3.10). In the stabilization steps when
k=L,s=0,1, ..., instead of defining E,,; by the formulas (2.11)—
(2.13) we shall construct E,,, to be an ellipsoid of possibly small volume and
diameter which contains the intersection E, N Gg. Thus

(3.2) Erg,,+12GrNEL,,
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should hold for all values of s, L, = 0. (Notice that to obtain E,,, from E,
we shall thus need no function evaluationswhenk = L,,s = 1,2, ...).

By this construction it remains true that all sets E,, k=0, will be sets of
localization for X*(f)NGy. If E, has the same centre as Gy i. e. x, = 0, then
we shall choose E, 4, (k = Lg,,) to be an approximation of

(3.3) E¥41:= E(X§ 41, Ak 41), X 41:= 0,
(3.4) ARy = 2(APy(A— R+ RPPy(A— R*I)) = 2B(A,).

Here Py(S) resp. P,(S) are the orthogonal projectors into the subspaces
generated by the “nonpositive” resp. “positive’’ eigenvectors of the symmet-
ric matrix S. (We say that 20 is a “positive” eigenvector of S iff Sz = Az,
has a solution 2>0.)

We shall numerate the eigenvalues of the positive symmetrical matrices
A according to

(3.5) LH(A)=21(A)=...=1,(A)
and assume that the corresponding eigenvectors are orthonormal.

Lemma 5. For arbitrary 0< A, = Ajf €R"¥n the ellipsoid defined by (3.4)
contains the set GgNE(0, A,) and has a diameter (volume) not greater than

V2R (resp. V2" vol E(0, Ay)).
Proof. Obviously we can drop the index k. Now let x be in GRN E(0, A)

and let _ .
L ={jlAa(A)=R?, I, ={j|A(A)>R?}.
Then using coordinates with respect to the eigenvectors of A:

1
- 2 AR+ A== 1,
2}1 2R2,§,’ 2 2

which finishes the proof. O

Remark. If we replace G; by an arbitrary (nondegenerated) ellipsoid
E(0, C), then the analogous problem can be solved by transforming E(0, C)
into a ball.

In the case when x, 0, we construct x,,, and A,,, to be (approxima-
tions of )

(3.6) X,’f_HI = Xk - zk+1, Zk+1: = 1(Ak - Rzl)xk,
3.7 A¥ 1= 18B(A)), see (3.4)
(The factor 18 could be probably reduced to 2 by a proper choice of x% ,).

Lemma 6 The ellipsoid E%, 4, defined by (3.6), (3.7) satisfies the relation
(3.2) for k = Lg,.

Proof. The statement of Lemma 6 follows from Lemma 5 using the fol-
lowing simple observation. If a point, w belongs to an ellipsoid E(u, 4V), then
E(u, V) is contained in E(w, 9V). The previous conditions hold for o = x%.,
and (u, V) = (0, R*I) resp. (u, V) = (x,, A,). O
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What remains to do is choosing the number b, and the numerical meth-
od to approximate the objects P;,(A,—R?I), i = 1, 2 (thus A%, and x},,)
appropriately.

It turns out that a proper choice of these approximations assures that
one van achieve — for all s and n=6 — that

(3.8) VOl (EL,,,)=e " vol Er
with

(3.9) Lgy,—Ly=[(2n%*+n) 3,105]+1
so that

(3.10) b, = 500.

Here [ ] denotes the entire part and the assumption n=6 is made only
for simplicity, for n=6 the same kind of inequalities hold with different
constants.

Remark. We could replace the function B(A) by a more easily computable
one (i. e. compute an outer ellipsoid containing (E(0, A)NGg) by the follo-
wing formula
B'(A) = (A=1+R~2I)~%, then E(0, B’'(A))<E(0, B(A))SV2E(0, B'(A)).
This, however leads to a larger increase of volume, see also [14].

Notice that in the original algorithm one needs — by (2.9) and (2.33)
— approximately 2n2+ n steps (2.12)—(2.13) in order to reduce the volumes by
the factor e~" (which implies a reduction of the uncertainty in f* by the fac-
tor e~1). Thus (3.9) shows that in the stabilized version we need to perform
only about three times more steps (2.12)—(2.13) than in the original version.
(The constants in (3.9) and (3.10) are not the best possible ones).

The error estimation (2.21) remains true if we replace N by N-3,105-1
and set &, = 500 in (2.22). The number of arithmetical operations needed in
the stabilization steps — during the whole algorithm with N function evalu-

3
ations and steps (2.12)—(2.13) — will not exceed the sum of iz[% + 2n2] X

6n
X (n+ 1) — which arises by the preconditioning (4.3)—(4.7) — and of
2 21 — 25 ()()2 -1
n—Mmax{calog[n(l +¢5 R?) {min{ log’ 2—’”@— , R*500%+ 1 ]x
2n+1 |2n2/n — R? R2500%+ 1
1-500%2R?
3.11) Xe,lo [——[10 14+¢,R? [mm{ log| ——— ||,
) Xcylog @n+ 1) g(1+¢5R?) 8 135002
2 __ -1
log 3/4R*—1 ,
3/4R%*+ 1
where ¢;, ¢, ... are positive constants not depending on R, n, and L. The

last number is “significantly less’” than the remaining number of arithmeti-
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cal operations, O(Nn?) connected with the steps (2.12)—(2.13) ifi lg Nn—2
n

is ““small”’. Note that R=1 can be assumed without loss of generality — and
then the singularity of the expression in (3.11) at R = 0 disappears, yet en-
larging R the error estimation (2.21) becomes worse.

The assumption that L lg ﬂz is small will be satisfied for large n because
n o n

N = Tkn? means that — after N function evaluations — the uncertainty in
the values of f* is already diminished (at least) by the factor e~.

Unfortunately we could not avoid the dependence on N of the expression
in the maximum bracket of (3.11). This is so because the values of x},, and
A%+, in (3.6), (3.7) should be computed (in our method) with an increasing
accuracy as s grows in order to ascertain (3.2) when 4,(A,)—~0 as k- ). Our
method of doing this consists in providing such approximations for x¥,, and

ARY3 G, whose errors can be included into constant multiples of B(A,)2G,.

Remark. It is interesting to note that a similar idea as the one used here
allows to construct other “easily implementable’ versions of the method of
centers of gravity, see e. g. [8], [11]. In order to explain this let us suppose
that the initial set of localization — for the whole set X*(f) — is a simplex
P, in R,

Then the exact set of localization for the possible minimumpoints after k
function and subgradient evaluations will be a polyhedron P, with at most
k+n+1 faces. If k is small (with respect to n) one can easily compute the
center of gravity of P, e. g. by simply updated simplicial decomposition of
P,, where the operation of updating requires only the easily standardized
simplicial decomposition of the intersection of a halfspace (corresponding to
(&(Py), f(P,)) with simplexes (elements of the previous decomposition) into a
small (minimal) number of simplexes. The decrease of volumes will then be
independent of n, it is known that

volP, = [1 — i] vol P,.
e

Now in order to keep the sets P, to have a finite complexity we can set a fixed
upper bound k, =k and include the set Py, into a simplex P} of small volume.

There is a simple, fast algorithm for computing P} = P§(Py,) such that
vol Py=n" vol P,.

Thus, in order to obtain a geometrically convergent method it is enough
to set k, = O (n log n). Now starting from P} in the same way as from P, the
k, step long iteration can be repeated. For the case n = 2 allowing k, = 4,
(i. e. poligons with seven vertices) we already get a method with a faster con-
vergence than the elllipsoid method. It seems that — for small values of n —
these “‘simplex-polyhedral’’ methods are superior to the ellipsoid method in

12 ANNALES — Sectio Computatorica — Tomus VII.
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some respects. Here also we have to prescribe analogons of the above stabili-
zal’fion steps in order to include the intersection P(';SﬂPo into a simplex
Pgs*!,

The main difficulty here is that the bound &, = O (n log n) allows Py, to
have exponentially (in n) many vertices. Also from the point of view of (the
analysis of) the external stability problem these methods seem to be less fa-
vourable (more complicated) than the ellipsoid method for large values of n.
One can prove that for any N-step algorithm (i. e. one using N (exact) eva-
luations of f(x) and g(x)) it is true that

N

(3.12) sup {e(N, /)| /€ F(Gg, L)} =p,LR8™ ™,

holds with an universal constant p, [11]. While the above described method
of the center’s of “gravity” is “optimal” — since by (3.12) and a simple ana-

logue of Lemma 2 it converges like aN/?, for a=<|1 L nevertheless (in
e

the case of identical memory, arithmetical complexity and stability require-
ments) the stabilized ellipsoid method seems to be competitive with any of
the known methods, see howerer [14] for a promising, new tool.

4. Realization of the numerical subalgorithms

For the approximation of P;(S), s = 1, 2 the following method is used.
Because of P,+P, =1 it will be enough to compute the difference Q =
= P,—P,. Consider the iteration

4.1) Q =S, Qi+1:=%(Q,-+Q,~1), i=0,1,2,...,r.

Let 2,(S)=0, i =1, ..., n, it is easy to see that Q,~Q quadratically for
k— . This method of dividing the spectrum of S is proposed in [9], the
author thanks T. Fiala for providing this reference. An other method (with
essentially the same properties) can be obtained from the observation:

(PoS)—Py(S))V/ S* = S; one can apply the Newton method for the computa-

tion of the positive square root ' S2.

In the iteration (4.1) we can use an exact i. e. noniterative method for the
computation of the inverses Q; %, (e. g. Gaussian elimination). In view of the
statement in (3.11) this does not lead to a relatively large augmentation of the
number of arithmetical operations needed for the algorithm as a whole.
Since the limit Q is a well conditioned matrix, the instabilities which might
arise in the iteration (4.1) are essentially those of the map S—(}/S?)~1S.
Because of ||S||=b2R?=500%R?, the main problem will be the analysis of the
effects of a perturbation S-S’ (preconditioning) by which we achieve that
the eigenvalues of S” are larger in absolute value than Ay(n) an appropriately
chosen positive function of n. This however implies that here, i.e. for (4.1),

the accuracy ¢, needed for the computations depend more heavily on n, see
(4.27).
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Lemma 7. For the iteration (4.1) the estimation

k
(42 13/Q)—sign (91 =(max] | 13|, L (418

holds for all k=0, j = 1, ..., n, where 4o(S)=0, denotes the minimum of the
absolute values of the eigenvalues of S.

Proof. Using the spectral decomposition of S one can reduce the study
of the convergence of the sequence (4.1) to the one-dimensional case. It is
easy to check, that

Qusrt1 _ Q. +1 2= Qo+1 1
Qk+1—l Qk—l] Qo—l] (lf Qk+1¢l).

In both cases Q=42,, resp. Qo> 4, one obtains monotone and quadratic con-
vergence, which is the faster the more Q, is away from the “singular points”

b = 0,Q, = <. From ||S|| = max {|A2,(S)|l,j =1, ..., n},(4.2) follows since
IIS||=max {||A]|, Rz}, and ||A||=R?b2, for all ossxble (i. e. occuring) values
of A and S, we could replace ||S|| by R?b?2 in (4 2). In what follows we shall
concentrate on the dependence of (the right hand side of) the estimation (4.2)
on 24(S). Since b,=500 can be ascertained — a condition which is of course
independent on the number of iterations (4.2), k = r, necessary to yield the
accuracies for [1,(Q,) — sign 4,(S)| required below (see (4.26)) — we shall
always assume that r is so large that the value of

szz ]2" [ R25002 —

1+ R%b2)

(14 R%) R2p2+1 R?500° +

is smaller than these accuracies. The point is that the speed of convergence

1 (4.2) — for the large eigenvalues 1,(S) — will be independent of n. Our

aim is to show that r can be chosen to be not greater than the value of the
maximum bracket in (3.11).

Thus the only problem is to guarantee for S = A— R2I not to have zero
(small) eigenvalues. Therefore prior to the application of the iteration (4.1)
we have to “precondition” S = A—R?I. For this we consider the mat-
rices

]R

(4.3) S;=A-RI+I1, j=0,1,...,n

] (1+ R*500)

For at least one value of j we shall have

(4.4) R?

In order to find such a value j constructively we note that (4.4) is equi-
valent to the inequality

(4.5) IS5

n
R*

12%



180 GYORGY SONNEVEND

Instead of computing ||T;|| for T; = S;%,j =0, 1, ..., n we shall com-

pute the Frobenius norms || T}, j = 0 , .
It is well-known that for U = U*¢€ R"""
(4.6) lWii=Ullz=Yn |UI.
Therefore from (4.4) follows the existence of a value j such that
2n2yYn
Iy =20
and if we have found such a value j, then
R2
4.7 Z S =
( ) 0( ]) o ZVn
Thus W1th Q, = S; we shall have after r iterations (4.1) (assuming that
T Fesoor
1— holds)
R+ 2n2}/n R25002 + 1
4.8)  |3,(Q)—sign A(S)|=|1 - —2RK__ :
. m\Xr gn Ap(9; R%+2n p n,j*

According to (3.4) let us define, see (4.3), (4.7),
’ l ’ ’
(4.9) P, =P} = —2—(1+Q,(Sj)), P =1-P; S;=S8(A), A=A,

B’(A) = AP, + R*P;,

By the choice (4.3) the matrices A and §; (thus Q,) have the same eigenvec-
tors, therefore (see (3.4))

(1P + Ropis )= B =(1 - o] (APS)+ RePutS)).
(4.10)
In order to prove an estimation
(4.11) vi,, j B'(A)= AP\(S))+R*Py(S))=w;, ,B'(A)
we start from (4.8) and set, see (4.7),

(4.12) R%:= [1 —#]Rz,

(4.13) W;,’] = 1 +6;‘, j, v;’] = (1 + 6;‘1, j)_l.
Now we shall choose r = r(n, A,, j) to be so large that

(4.14) o, = —.
n



STABILIZATION OF THE ELLIPSOID METHOD 181

Then (4.10) and (4.11) imply that

, 2\t , 2
(4.15) B (A)[l +:] c B(A)C B (A)[l + n_—_1]
According to (3.6), (3.7) we define (see (3.2) and (4.9))
(4.16) Xe41:= Pi(Spx S; = Si(Ay).

Before defining A, let us prove that — see (3.6) —
(4.17) Xi41— X 41 €4BY2(A,)G,

can be attained by a proper choice of r if n=6. We shall use the coordinates
xi, i =1, ..., nof the vector x = x, with respect to the system of orthonor-
mal eigenvectors of A,, the origin being — as always — the centre of Gg.

From the existence of a vector x* in G such that x+y A, y = x*, for some y,
lyll=1 follows that ||x||=<(b,+ )R, see (3.1), and

3 .. ,——— R
|x'|s?R if }/li(Ak)s—z—,

I TP, R
|x'|s?R if |}/}.i(A,,)—R|s7.

Now we observe that
Py(So)x—Pi(Sy)x = (Pi(So)— Pl(Sj))x+ (Pl(Sj) —P{(Sj))X.

Here the first term of the right hand side belongs to
-1
(4.18) % [1 - i] BY%(A,)G, S 3BV} A,)G,, if n=6.
n

Decomposing the set of coordinate indices [1, ..., n] into three parts as
indicated above corresponding to A/*= —[21, —?s Al s% R and 2/ 2% R,
(the main point is that we need a relatively large accuracy for the subspaces
corresponding to the small eigenvalues of A,) we see that the second term can
be included into

3  Rop,;
4.19) max | — —==, 56, ;, (1+b,)e: ;'BY%(A,)G, < B¥*(A,)G,,
(1.10) max 2 Sy 50, (1+6)0f, ) |BV(A0G S BN,
1-5002R? |2" |3/,R2—1 |?
Qﬁ,j:=max{ 1+500°R | 3_;4-1??4-_1 } (1+1S;lI(n=4),
‘ 4

if we choose r to be so large that the maximum of the three numbers in (4.19)
is not greater than 1. Then (4.18) and (4.19) imply (4.17).
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According to (3.6), (3.7), (4.15) and (4.17) we define
(4.20) Appi= [l + —2—1 34B'(A),
n—

(note that 34 = 42+ 18), then (3.2) will be satisfied.

By adopting the same stopping rule (2.10) and definition of ¢, in (2.22),
and (2.33), we can now completely specify the (stabilized version of the ellip-
soid) algorithm, by setting

(421) Ls+1 = Ls+ [(y_l(n2+n) 37105]+ 1’ Lo = 0
From (4.15) and (4.20) we obtain that
2
(4.22) A,,Hs[l +i1) 34 B(A).
n -

This implies — by vol B'2(A,)G,=<vol E, — that

VOlEk+1 S[[l + 2 234 n/zsez,losn’ for n=6.
Vol E, n—1

From (2.9) and (4.21) we obtain (3.8). Finally the validity of (3.10) follows
from (4.22) and (2.34) by

n2 [y'l(n!+n)3,105]+l1 2
[n=—2] [ -

for p = 1,1, y = 1/2.
Notice that by choosing s(n) = gn~3, ¢—0, we can achieve that u—1,

(4.23)

2
] 34<500% (n=6)
n—1

y= —l—, then the limiting value of b, in (4.23) for n— o is less than 130. If
2

we choose s(n) — gn=2 for ¢ small enough, see (2.36)—(2.37), then for a sui-
table pair y, u we can get b, = b,(y, u) near to 50.

In order to prove the validity of the statement expressed in (3.11) note
first that r is to be chosen to satisfy the conditions (4.14) and (4.19). Accord-
ing to (2.22) we set

(4.24) & = e4(LR)~2502"*.

Then (4.14) implies (wWhen n=6) together with the stopping rule (2.10), (2.20)
that (4.19) is satisfied if
3 RL

(4.25) — ——oh, ;502=1,
2 ¢

(notice that 11(Ak)2iz' Ve, can be assumed by (2.20) and on, ; 50I=1 will

be a consequence of (4.25) because RL =¢ can be assumed by the meaning of
the minimization problem, see (2.4)).



STABILIZATION OF THE ELLIPSOID METHOD 183

Now we shall choose r — at each steps = 0,1, ... — to be the smallses
natural number for which the inequalities (4.14) and (4.25) are satisfied (at
consequences of (4.8) and the definition of o}, ; given after (4.19)). We have
thus the inequalities

3 4
r D Rz— 1

3 1 —500%2R? |2 4

— 502 maxy | ———— S — =

2 1 +5002R? 3 Rey
4

__YN__
(4.26) =2 D" (1 4+5002R?)L.
2 2" 2 2 _ 2"
max{ 2R __|F]R00°—1 }(1 +R25002)smin[—1—, 1)
R%+2n2/n R2500% + 1 n 501

From these it is easy to obtain the estimation (3.11) by noting that in
each of the steps (4.1) one has to perform O(n®) arithmetical operations, and
during N function evaluations there are no more than N(3(2n2+ n))~1 sta-
bilization steps. Note that the procedure (4.3)—(4.7) may require (n+1)X

3
X [_r;_ + n2] operations at each such step.

Finally we note that if R> 1, then
2n%yn—R?
2n%)n + R?

-1

log =cglogn+c,logR.

log ‘

Thus we have proved that the proposed stabilization method retains
all the positive features of the original method.

In order to analyse approximately the stability problem for the compu-
tation of (P,—P,)(A,—R?I) we recall the formula (where S = A,—R3I)
(Py(S)— Py(S))= (¥S*)~*=S. We expect that the behaviour of the iteration
(4.1) with respect to errors in Q, and rounding errors is not essentially worse
than that of this formula. Assume that the values of S;;, i,/ =1, ..., nare
stored within accuracy ¢,, thus the elements of S2 may contain errors of mag-
nitude ||S|le,n"/2, note that ||S||=b2R2. Using the formula (2.29) and the well-

known perturbation bound for the inverses (A" = ¥S2 A = VS_z)
[AYPIA" - A

A== A7 = LT i AT A - Al<1,
1A A - A

we obtain in a similar way as in the proof of Theorem 2 that if

(4.27) €= % R4 n~10,
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the value of P,(S)— P,(S) can be computed within accuracy n=*2 k, (in the
spectral norm) for a universal constant k,. In view of (4.14) this will suffice for
large enough values of n.

If R=1, then the small eigenvalues of A, are well separated from the
small elgenvalues of S;(Ay), therefore no serious problem arises (note that
|All=b2R?), the accuracy (2.23) will be sufficient (by a scaling we can
always assume that R>1).

5. Acceleration of the ellipsoid method

First we present an algorithm for the one-dimensional problem. This
algorithm for computing f* has (linear) convergence rate not greater than
9-"s, it is thus faster than the ellipsoid (bisection) algorithm whose rate of
convergence is 2~1 even if the accelerated versions (2.10—2.13) or (2.14)
are used. Here (for the one-dimensional case) we shall not need the existence
of a finite Lipschitz constant for fover [—R, R] = [a, b]. Note that the
method of “‘golden sections” is not a concurrent (i. e. better) one if we assume
that the values of g(x) can be obtained with little additional cost (in addition
to those of f). In fact we expect that the method proposed below — when
properly generalized — yields a faster convergence than the method of golden
sections even if only function values can be measured (but without errors:
in fact, one should not be surprised to note that an accelerated method is less
stable with respect to errors in the measurements; for related questions, esp.
the stability of the method of golden sections, see [1]). It should be noted that
the loss of stability accompanying the acceleration proposed below (as well as
the one propozed in (2.12)—(2.14) for D, >0) is dangerous only at the “end”
of the algorithm, i. e. in the ‘‘beginning’’ when we are far from the minimum
(g, and 4,(A,) are not too small) these accelerations can be used freely.

Based on observations made in connection with this method we present
a method to accelerate the convergence of the ellipsoid method for arbitrary
values of the dimension n. In the new method we consider — at each step
k — not only the (approximate) set of localization for the possible minimum-
points but also (the approximation of) the ,,minimum point” x} corresponding
to that step.

The latter corresponds to that convex function f, which provides —
simultaneously for all x — the minimum of the possible values of f(x) under
the information gathered up to the step k: f,(x¥) = fi¥ (in order to make x%
unique, we define it to be that element of X*(f,) which is closest to the centre
of E,) and

(5.1) Ju(x) := inf {h(x)|h(x;) = ¢;, grad h(x;)>g;,j =1, ..., k, h convex}
where

(5'2) c] =f(xj)’ nggradf(xj))j: 1) "')ky

thus f, dependsoncy, ..., ¢y 81y - -+ &y



STABILIZATION OF THE ELLIPSOID METHOD 185

In fact — in order to define x,,, — we shall not have to compute the
functions f,, but only an approximation of their minimumpoints x} (in addi-
tion to the approximate set of localization for the possible minimumpoints
constructed as E, above).

First we note that in the one-dimensional case it will be enough to re-
member, i. e. update — at each step k — the values of

(fCxx, 1) 8(xk, 1), S (X, 2), 8(Xy, 2)), Which fix a “standard” set K(f, k),
(5.3) O, 1) = I‘Ejigkf(xj)» J(xy, 5) 1= min {f(x))| j <k,

signg(x;) = —signglx,,)}-
Then the interval (x, 4, X, ,) will be free of points x;, j=k and

(5.4) 2?}’(2 {f (%, )+ 8%k, )y X=X, )} = Sil(X), XE€[ Xy, 1, X, 2]-

Let now xj, be that (uniquely defined) point in [x, 4, X, ,] which satisfies
(5.5) Jilxk) = S, 1)s X # X 10

Here we suppose that for k = 2 (the starting situation) sign g(x,) =
= —sign g(x,) =0, where one of g(x;), i = 1, 2, may be infinity (thus we do
not suppose the existence of a finite Lipschitz constant over [x,, x,]). We as-
sociate to these data, i.e. to K(f, k), the triangle T(f, k) formed by the points
(6,10 SO, 1)y (XK, f(x,1)) and (xk, f¥). We define the one-dimensional
algorithm by

(5.6) X1 '= %(x,’(+x,‘,1+x,‘f), k=2,3,....

In order to obtain an error estimation for this algorithm we introduce a
“functional” ¢ defined over the “standard” (recurrent) situations, K =
= K(f, k); therefore we shall write

(K, k) = o(f, k), X1 = X(K(f, K))-

Thus K(f, 2) corresponds to the initial information: f(x) and g(x) are
computed at a and b, providing a set of localization in C(a, b)).

—fi¥ s
w6y = (TG ) = F) %%] '

Theorem. For the algorithm defined by (5.6) one has
k-2

=1 )| =9 o(f,2), k=23, ... .

The proof of this theorem is reduced — by induction with respect to k —
to the following Lemma.
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Lemma 8. The value of the functional ¢ is diminished — af eachstepk,i.e.
for arbitrary values of ¢,y = f(Xy41) and g, .1 €S (X,41) — at least by the
Sfactor 9/,

The proof of this lemma is elementary, for brevity we present here only
the main observation: the functional ¢ is “invariant” under the “affine”
transformations (scalings)

(p(f**! k) = d‘P(f) k)7 lff** = df—(.’, d, €ER1, d=0.
o(f; k) = o(f, k), if fx) = folx—x§)+xF)-

Moreover one can show that is is enough to prove Lemma 8 for the ca-
ses where f(x,,,) = 0,f(x;,») = 1 and f(x, o) = — oo, (Or f(X,1) = — o,
in fact, even the latter case can be easily reduced to the first one). This is so
because among the ‘“standard” sets K = K(k), with fixed values of ¢(K)
and |xz—x, ,| (we can set x, ; = 0, x, , = 1) thelargest possible value for
@(K(k+ 1)) will be realized (for some, worse values of f(x, ;) = ¢4y = ¢(K)
and g(Xy41) = gF41 = g(K)) in the case when f’ is infinite at x, ,
(0r x,,,).

This can be proved using the following observations. The affine trans-
formation of R? which keeps the lines f = constant fixed and transforms the
triangle T corresponding to K into a triangle T* (having one vertical side
and corresponding to a standard set K*) takes the centre (of gravity) of T,
(Xg415 Ves1) into the centre of T*. Now one can consider the four cases —
corresponding to the alternatives (where x,,; = x(K))

J(Xpes1) = Visrr 84 40) =0,

separately, and show that in all cases of possible outcomes of f(x;41), 2(Xx+1)
(which define the new value q)(K(k—{— 1)) there exist an outcome (f**(x;4,),
2**(x/.+1)) (not necessarily the one corresponding by the above affinity) such
that for the new sets of localizations K(k+ 1), K**(k+1)

P(K**(k+ 1) =p(K(k+1)).

In the worst cases specified above, Lemma 8 is obtained by straightfor-
ward computation (the minimal value of a cubic polynomial should be esti-
mated only); the constant 9's is not the optimal one.

Notice that in order to construct x,,, we have to know only the value of
xj and the (exact) interval of localization (x, ,, x;). Based on this observation
we propose now the following (heuristic) algorithm for the multidimensional
case, its implementation is not essentially more complicated than that of
(2.11)—(2.13).

The standard situation which appears and is updated at each step k will
be that in addition to the ellipsoid E} = E(x}, A}) — providing a set of loca-
lization for X*(f)NGr — we know also an other ellipsoid E2 = E(x2, A?)
which contains all the points z in Gy, for which f(2)=d,, where d,<f(x, ) is
chosen by the algorithm. Here x, , is defined as in (5.3).



STABILIZATION OF THE ELLIPSOID METHOD 187

Further it is supposed that we know an other number d% <d,, which pro-
vides a lower bound for f*. We define

[k —%ea S, 1) —d ,
I —xzl 2+ m)(f(%, 1) —di)

this determines «, g uniquely. In the one-dimensional case we can set d¥=f*
and work with exact sets of localizations E}, E?. These uniquely determine
the point x¥ so that (5.7) is equivalent to (5.6) when the following updating
of E}, EZ, d,, d¥ is used. (Let us note that the choice (5.7), specially the appe-
arance of (n+2) in the denominator is indicated from the study of the prob-
lem of providing lower bounds of complexity for our algorithmic (minimiza-
tion) problem, see our remark after (2.23).
The value of df can be updated by

(5.8) d¥ 11 = max (d¥, f(Xe41) +

+ {80 41)s Xk — Xp1) — (ALG(Xk41)s 8(Xe1))72),s

where i=1, if f(x,,,)>d, and i = 2 otherwise. The meaning of (5.8) is ex-
plained by the fact that the minimum of the linear function f(x; ;) + (€(Xx+1),
X—X,+1) Over an ellipsoid E(x,, A,) is equal to

JGes1) + @%41)) X — Xer1) = (A8 (X 41)) 8Kk +2))' 2.
We shall set
(5.9) dyyy = dy if dy€[f(x, +1,1)— 5(f(xk+1,1) -
—d¥ 1), @iy + (X 41,1) — ¥ 11)]

(5.7) Xg1 = axk+ BXE,

and set

1 .
dk +1 = E (f(xk +1,1) + d;f +1) otherwise,

where 0< 6, y<1/2 are parameters which may depend on n.

For the updating of E} and E? we shall use Lemma 1, i. e. similar for-
mulas as given in (2.11)—(2.13).

For the definition of E},, we shall use — besides the values of f(x;+1)
and g(x,+,) — E}, if f(x,41)>d,, and E2, if f(x,+,)=d,, doing this according
to the above mentioned formulas. For the definition of E%,, we shall use —
besides the values of f(x,,,) and g(x,,,) — E?, if d,,, = d, and E,, other-
wise. Note that, when we compute the update of EZ, i. e. EZ,,, it may happen
that the prescription given just above leads to an empty set, i. e. the value
corresponding to the right hand side of (2.11) becomes greater than 1. In such
a case we redefine d¥ ., and d,,, according to (with the usual misuse of no-
tation)

1
df41:= dyyqy dygyi= o (dF 41+ f(e410)s

as many times as necessary.
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Finally let us note that by keeping in memory — at each — step k—r
pairs of values from f(x;), g(x;), j = 0, 1, ..., k, we can use them for upda-
ting Ei, i = 1, 2 according to (2.14). This seems to be especially relevant
(e. g. for the updating of E? in such cases when d, ., #d,) with the following
specification. One sets r = n+ 1, and uses an “exchange algorithm” to up-
date the index sets I, of (n+ 1) elements by maintaining the following con-
dition
(5.10) O€econvex hull {g(xkj), kiel,j=1,...,n+2)

so that (in case of several possibilities) max {k—k;| j =1, ..., n+2} be
minimal. O

After the submission of this paper significant advances have been made in
linear (convex) programming by the use of interior point methods. Motivated
by N. Karmarkar’s projective method, the present author proposed a new
method for linear (convex) programming based on the notion of an “analytic
centre’” for polyhedrons and exploiting “analycity’’ (of the constraints) by
the use of rational (multipoint, Pade) extrapolation, with Newton correc-
tions in following the curve x(1) of the “analytic centres’’ of the polyhedrons
P(2) = {x|{c, x)= A, Ax— b}, AcR™", see [14].

These interior point (‘‘analytic’’) methods seem to be superior (in the
“worst case” sense) to the ellipsoid method only if the ratio m/n is not too
large, (in the simplest implementation of these methods it is important that
all constraints are ‘“‘simultanously regarded’”” when choosing the next step,
while in ellipsoid methods only one constraint is used at each step).

Acknowledgements. The author thanks Professor J. Steer for construc-
tive criticism of an earlier version of this paper.
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