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Abstract. This paper presents a new approach to the feasibility problem
of oriented matroids. The distinguished element e€ E is alternatively a basic
and nonbasic element during the algorithm. This approach simplifies the
pivoting rule.

The connection between this algorithm and the known ones (Bland [1],
Terlaky [6]) is presented in the final part.

1. Introduction

The definition and the fundamental properties of oriented matroids are
presented in the papers of Bland [1], Folkman and Lawrence [4], Bland and
Las Vergnas [3]. We will use them without formulating again. The notations
of Bland are used in this paper. The tableau construction of Bland [1] and
the pivot transformation play an important role in our further considera-
tions.

Now we present the feasibility problem of oriented matroids. Let
M = (E, o) and M* = (E, ¢*) be dual pairs of oriented matroids. Let ¢, E
be the distinguished element, where E = {e,, ..., ¢,}is a finite set.

Definition 7.1. The oriented circuit X = (X+, X~)€o is called feasible,
if X+ and X- =@.

The same way, the oriented cocircuit Y = (Y'*, Y~)¢€o* is called dual
Seasible,ife,cY*and Y~ =

It follows from the orthogonallty property of oriented circuits and cocir-
cuits (Bland [1]) that exactly one of feasible circuits of cocircuits exists. Now
we give a new algorithmic proof of this fact, i. e. we generate a feasible cir-
cuit or cocircuit.

2. The finite algorithm

This algorithm is a very simple variant of Bland’s [1] minimal subscript
rule. The linear algebraic variant of this algorithm and its consequences are
presented in the paper of Klafszky-Terlaky [5].
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Let us start with a base B and the corresponding tableau T(B). It is well-
known that an oriented cocircuit ¥ and an oriented circuit X is associated
with every row and column of a basic tableau respectively. The element 7, €
€{0, +1, — 1} of the tableau shows the sign of the element ¢;€ B in the orien-
ted cocircuit Y; associated with the basic element ¢; (z;; = +1). In terms of
this notations the problem is finding a base B with the property e, ¢ B such
that the column of e, is nonpositive (in this case (—X;) is a primal feasible
circuit) or if ¢, € B and its row is nonnegative (in this case Y is a dual feasible
cocircuit).

Pivoting rule (P)

Step 0. Let a base B and the corresponding tableau T(B) be given. If
e,¢ B, then go to Step 1, if ¢, € B then go to Step 2.

Step 1. a) If e, ¢ B and 7;; =0 for all ¢;€ B, then (— X,) is a primal feasible
circuit. STOP.

b) If e,¢ B and a) does not hold, then let r = min {i|z;;>0 for ¢,¢ B}.
Make a pivot operation. e, enters and e, leaves the base. Continue with
Step 2.

Step 2. a) If e, € B and 7,,=0 for all ¢;¢ B, then (—Y,) is a dual feasible
cocircuit. STOP.

b) If e;€ B and a) does not hold, then let k = min {j|z;;<0 for ¢;¢ B}.
Make a pivot operation. ¢, enters and e, leaves the base. Go back to Step 1.

This algorithm results in either a primal or dual feasible oriented cir-
cuit or cocircuit, so we have to prove only that this algorithm cannot cycle.
The novelty of this approach is that the element ¢, is alternatively a basic
and a nonbasic element through this procedure, contrary to the known
methods, where the place of the distinguished element e, is fixed.

The following theorem proves the finiteness of the procedure.

Theorem 2.1. The algorithm defined by pivoting rule (P) is finite, that is
cycling cannot occure.

Proof. Let us suppose to the contrary that the algorithm cycles, that is
starting from a base B we obtain again the base B. Denote E¢ = {¢;|e;
changes its place with e, through the cycle}. Let ¢ = max{i|e;€ E¢}.

Consider the two situations when e, enters the base and when e, leaves
the base. The oriented cocircuit ¥, as row e, of the first tableau and the ori-
ented circuit X; as column e, of the second tableau have the following pro-
perties:

1. egeY,* 1. e,€ X,
2. e,€Y,™ 2. e Xt
3. ,cE-Y," if j=<¢q 3. e, cE-X,* if j=q.

Since the oriented circuits X, and Y, have common elements (e, ¢,) so
to fulfil orthogonality condition both their positive and negative part must
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have common elements. We know that the elements e;, ¢, and ¢; if j<q are
in opposite parts of these circuits. So in order to prove our theorem one has
to show only, that their homogeneous parts have no common element, that is
the set (X, *N Y H)U(X,~ N Y, ") is empty. As we have seen above only the
elements ¢; 1fj>q might be in these sets, but these elements are only in one
of the circuits X, and Y] since these ones are not elements of E¢, that is an
element ¢; for j>gwasa basnc or nonbasic element through the entire cycle.

3. Connection with the original algorithm

For an arbitrary oriented matroid, given base B and tableau T(B) the
row of the pivot element remains unchanged or multiplied by (—1) — de-
pending on the sign of the pivot element — through a pivot operation. This
is obvious, since the same elements generate the oriented cocircuit of the pi-
vot row. It may be necessary to multiply this row by (—1) in order to have
(+ 1) in the column of the new basic element.

Bland’s [1] algorithm, which was generalized by a criss-cross type meth-
od in [6]is the following. Let us choose a base B such that e, ¢ B. Choose the
lowest indexed positive element (e,) in the ¢; column of the tableau, then cho-
ose the lowest indexed negative element (e,) of the e, row. So we have the pi-
vot element (z,;).

By the above remaks it is obvious that our new algorithm in two steps
produces the same base as Bland’s one. We change first ¢, by e, and then e,
by e,, since after the first pivoting, row e, of the tableau is identical to row e,
of the initial tableau as we have seen above.

The same connection with the dual of Bland’s algorithm holds, if we
start with a base B and ¢, €B.
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