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In this paper cooperative solutions of infinite-person games with time-
depending fuzzy coalitions are studied. Infinite-person games were intro-
duced by Aumann in [1]. For their applications in economics we refer to Hil-
debrandt [2]. The idea of using fuzzy coalitions (i. e. coalitions with “rates
of participation”) is due to Aubin (see [3], [4] and [5]). Dynamic coalition
models were considered in [6]. Cooperative solutions of N-person dynamic
games were studied e. g. in [7].

In the present paper the community of players is modelled by a com-
pact metric space. A finite subset of players is supposed to control the en-
vironment. The dynamics of the latter is described by a linear differential
equation, and its final state determines the pay-off of each player. Under
continuity assumptions on the pay-off functions, the existence of a coopera-
tive solution for the whole infinite set of players is proved.

1. Let Q be a compact metric space. The elements of 2 are interpreted as
players. We suppose that the environment of the players is described by the
differential equations

x = Ax
with an appropriate matrix A¢R"%", Then we consider a finite subset
'QN = {COl, . ooy (ON}CQ

of distinguished players which have the option to influence the environment.
The influence of player w; is given by the equation

where b;¢R" is fixed (i€ 1, N).
For a given cc@ := {1, ..., N} the set of players
M Q.= {w;: i€c}
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is interpreted as a coalition. The influence of a coalition is supposed to be the
superposition of the single influences:
2) X = Ax+ X'b,.
i€c

For a more flexible model, we suppose that, instead of forming a “strict”
coalition, each player in Q4 may have a ‘“rate of participation” v;€[0,1]
(iel, N).

Definition 1. Any element veU := [0, 1]% is called a fuzzy coalition.
Any ve U, := {0, 1}* is called a pure coalition.

Clearly, there is a natural one-to-one correspondence between the pure
coalitions and the sets (1). Moreover, let’s consider both U and U, as sub-

sets of RN. Then the set of fuzzy coalitions is nothing else than the convex
hull of the set of pure coalitions.

Now fix T¢R, and put
AU = {ueLY[O, T}, u(t)e U fora.e. [0, T1}.

The elements of U are interpreted as time-depending fuzzy coalitions.

We fix an initial state x,€ R" and consider the mapping L: LY[0, T]-R"
which associates with each u€ LY[0, T] the point x(T) of the solution of
the following initial value problem

N

3 %= Ax+ > bu,
i=1
x(0) = x,.

For a ucU, (3) is interpreted as the dynamics of the enviroment under the
influence of the time-depending fuzzy coalition u. Clearly, (3) is an exten-
sion of (2) in some sense.

2. Having set up the dynamics of the game, we turn to the formaliza-
tion of the pay-off. Let
g O2XR*-R

be an upper semicontinuous function such that for every y€R" the function
g(-, ) is lower semicontinuous. The function g is interpreted as follows. For
every (w, Y)€2xR", g(w, y) is the pay-off received by the player w, provided
that the process (3) has ended at y.

Let’s define
G: R"~C(Q), G(y) := g(+, ¥);
F = G [o] L[U'

According to the above interpretations, the function F: U~ C(£) asso-
ciates the resulting pay-off as a continuous function of the player with every
time-depending fuzzy coalition ue U.
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Definition 2. The pair I': = (U, F) is called an infinite-person dynamic
coalition game.

Definition 3. A u, c¢@ is called a cooperative solution of the game I' if
for every uc U the inequalities

Fu)(@)=F(us)(w) (0€f)
imply that
Fu) (o) = F(ux)(@) (w0€Q).

Remark. In terms of vector optimization, a cooperative solution u,
provides a maximal value of the function F with respect to the partial or-
dering of C(2) according to the closed convex cone K of nonnegative func-
tions in C(R2). (See e. g. [8].)

In the next section we shall prove the existence of a cooperative solu-
tion to the game I'. To this end we shall need the following.

Lemma. For any convex compact set V¢R” the set
@ := {uelY{0, Tlu(t)e V fora.e. t€[0, T]}
is weakly compact in LY [O, T).

Proof. It is obvious that (¥ is convex and bounded in norm. First we
prove that @ is closed in the norm topology.

Assume that u,€@ (n¢N) and lim (u,) = u,€@ in the norm topology.
We prove that u,€(0. VcR" being convex, closed and V=RY, V can be rep-
resented as the intersection of a countable set of closed support half-spaces.
Thus, it is sufficient to show that for any a¢RY and «€R

VcH:= {z¢RN: {4, 2)=a}
implies that

4) u(H)cH fora.e. te[0, T].
For the characteristic function y,,: [0, T]-R of the set
M := {te[0, T): uyt)¢ H}

we have

foM(a, u,y di=ad(M) (n€N),

where 1 is the Lebesque measure in [0, T']. Since the sequence (u,,) also weakly
converges i, we get

lim [f(a, u,,)d}.] = lim [foM(a, un>dl] = foM(a, uo)dA =

_ Mf (@, ug)dh =a AM).
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To prove (4) suppose the contrary: A(M)=>0. Then from
(@, uyt))>a (teM)
we obtain that

S @ upydr=ar(m),
M

which contradicts to (5).

Consequently, @ is closed in the norm topology. By its convexity @ is
also weakly closed. On the other hand, any weakly closed convex and norm-
bounded set in a reflexive Banach space is weakly compact (see e. g. [9]). O

3. In this section we prove the following existence theorem.

Theorem. The infinite-person dynamic coalition game I" has a cooperative
solution.

Proof. According to Krein’s theorem (see [10]), for any separable Ba-
nach space Z ordered by a closed convex cone K Z, there exists a functional
D€ Z* which is strictly positive in the sense that

(P, 2)=0 (26 K\{0)).
Since Q is a compact metric space, C(Q2) is separable. Applying Krein’s the-
orem with Z := C(Q) and
K := {p€C(Q): p(@)=0 (0€D)),

also using Riesz’s theorem, we obtain that there exists a Borel measure u in
Q with the following properties: For any g€ C(Q2)

P(0)=0(weQ)= f gdu=0,
2

Y w€: p(w)=0

©) 150 ¢(5)>0}=’,! pdu=0.

Now we define

FAU-R, f(u):= fF(u)du.

Now we shall prove that the continuity assumptions on g in Section 2
imply the upper semicontinuity of f in the weak topology of . Hence, by
the weak compactness of @, the classical Weierstrass theorem guarantees
the existence of a minimum point u, of f. We shall see that u, is the required
solution to I

Let’s fix a u,€@. In order to prove the upper semicontinuity of f at u,,
we pick an arbitrary positive real number e. We define

Q:= L(U), yo:= L(uo)-
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First we show that there exists a neighbourhood Qy, of y, in Q such that

(M 2w, ) <g(w, Yo)+ &/ u(2) (¥ €Qyp, 0 €Q).

We fix an arbitrary w,€ 2. Then, by the upper semicontinuity of g and the
lower semicontinuity of g ((-, y,) there exist an open neighbourhood Q,, of
Yo in Q and an open neighbourhood €., of @, such that for every w¢Q,,
y€Q., we have

8w, Y)<g(wo, Yo)+e/21(Q)
2(w, ¥o)>g(wo, Yo) —&/2u(%2).
The family
Poyi= 2,) X Que 22X Q (we€2)

is an open covering of the compact subset 2% {y,} = £ X Q. Hence there exist a
keN and elements

ol ..., o*ec
such that
k
QX{Ye}C U Puy-
j=1
k
Theset Qy,: = N Qo is a neighbourhood of y, in Q such that for every w2
j=1
and y €Qy, there exists a je 1, k with (o, y)€ P.; and
8(w,¥)—8(@, o) = g(e,y)—g(@), yo) +
+8(, ¥o)— 8w, Yo)<e/2(2) +¢/2u(2) = &/u(L).

Now, from the variation of parameters formula, it follows easily that
the operator L is continuous in the weak topology of LY¥[0, T]. Therefore
there exists a neighbourhood @, of u, in @ such that

L(u)€Qy, (u€Uu,).
Hence, by (7), we get that for any ue@,, and w€Q
F(u)() = G(L#))(w) = g(o, L)<
<g(o, L(uo)) +&/u(Q) = F(uo)(@)+e/u(€2).

By integration with respect to the measure u, we obtain that for every
ueUy,

fu) = fF(”)dP'< fF(uo)le‘E = flug)+e

that is f is upper semicontinuous in the weak topology of LY[O, T].
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Since @ is compact in the latter topology, by the Weierstrass theorem
it follows that there exists a u, € @ such that

®) f@)=f(uy) (ue).

Finally, we show that u, is a cooperative solution of I'. Indeed, let’s
suppose the contrary. Then, by Definition 3, there exists a u €@ such that

Fu)(@)=Fu)(@) (0€f)

and for some we2 B B
F(u)(@)=> F(us)()-
Since p has the property (6), taking ¢ : = F(u)— F(u,) we get

f@)=f@) = [ [F)—F(u,)du=0

in contradiction with (8). O

Remark. [t is easy to see that the above theorem also holds for games
with time-depending dynamics, i. e. in case in (3) Aand b; (i€1, N) are, say,
continuous functions.
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