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In practice, in a number of higher order variational problems, disconti-
nuity arises not only in the last derivative of the admissible functions, but
also in their derivatives of lower order. An interesting special case, among
others, has been motivated by investigations in economics [3]. The subject
is generally treated in [6], [7] and [8]. In the present paper, a generalization
of this topic is given in a direction similar to that of [9].

1. Notations and definitions

Let neN be fixed, and take arbitrary real numbers a, b (a<b), «;, B, (i€

€0, n—1). We denote by A the class of all real functions defined and conti-
nuous in [a, b] which are n-times differentiable except an at most countable
set and each derivative of which is a function of first kind (see [5]). In other

words, x€ A implies that for every i€ 1, n, t€[a, b[ resp.s€ Ja, b] the unilateral
limits x(®(t+0) resp. x((s —0) exist. We also assume that each x € A satisfies
the boundary condition

(1 xD(a+0) = o, xXNb—0) =B, (i€0, n—1).

(Here and in the following the O-th derivative of a function is the function

itself.) In case of «; = B, = 0(i€0, n—1) the corresponding class of functions
is denoted by A,.
Put j:= id[4 5; and for any « €R define the function

a:[a, b] ~R, t>a.

Let F:[a, b]—~R be a function of first kind. Then for every z€[a, b] we shall
use the following notation

fF:[a,b]—»R, t—»jF.

o%
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For each function x¢€ A define its n-th lifting by

n
x=(,x x, ..., xM).

For any @:R"*2-R we denote

n n
Dx: = D o x(x€A).

Now, given a continuously differentiable function f.R"*2~R, we denote
*he partial derivative function of f with respect to its i-th variable (i€l,

n+2) by f. o
Let ¢ and y be real functions defined in the interval [q, b] except an at
most countable set. By the equality

=y

we mean the following: There exists an at most countable set Hc[a, b]
such that

o(t) = v(t) (tea, b\H).
b n
Consider now the functional :A-~R, x—~ ffx. Let x€ A. Then the func-
a

tional
b n n n
8 l: AR, h~ [(faX-h+f.gX I 4.+ [y sXh®)
a
is called the first variation of I with respect to x. It for some x€ A the range
of the first variation of I with respect to x is the set {0}, then x is called a

stationary function of I. It is a well-known fact that I can attain an extre-
mum only at a stationary function.

2. Results

Theorem 1. Suppose that x€ A is a stationary function of the functional I.
Then for each t€ ]a, b[ we have

) Tt x(), X (¢ =0), . .., X(t—0)) =

= f.a(t, x(t), X (t+0), . .., x"({+0)),
and

3) fi(t, x(t), X' ¢ £0), ..., x(t+£0)) = 0 (i€4, n).
Proof. To simplify the setting, denote

i = fpax (i€0, ).
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Since fis continuously differentiable, instead of (2) and (3), it is enough to pro-
ve that

“4) uy(t—0) = u(t+0) (t€]a, b[)
and
) u(t£0) = 0 (t€]a, b[; i€2, n).

The function x is stationary so for all h¢ A, we have
b
(6) 6. I(h) = f (Uh+uh’ + . .. +uh™) = 0.

Now fix an arbitrary number c€ Ja, b[' and k,€N such that [c—1/k,,
c+1/kg]c[a, b]. For pel, nand keN\1, k, define

(Pp,k:[a’ b] -R,

—k—x—c+L]p , ifte[e—i,c],
p! k k
-2
t—> ALY c+i—x , if te[c,c+—1—],
pt | k k k
0 if te[a b]\[c-L c+i]
b b k’ k .

Clearly, ¢, ,€A, and, except three points, it is differentiable any times in
[a, b]. A simple calculation shows the following:

1
k, iftele——, [,
] p [

(M i) = |
—k, if te]e,c+—]|
k
(keN\1, ko);
® <p§:?k(c—%] =0 (pe2,nic0,p—1);
. 1
k, if te]c-z, f,
9) PHUt) =

1
0, if te]e, c+—
] k[

(p€2, n; keN\T, ky);
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(10) gout£0) =0
(tela, b[; p€l, n; «eN\1, p);
11 Pt £0)| =1

(tE]a! b[; PEI, n; 1617 p_l)'
Introduce now the notations

« 1
(12) Via: = f fu, (i€0, n; €1, n)

It is obvious that V4 is continuous and Vi,a(c) = 0.

First, let p: = 1 and for every k€N\1, k, consider the value of the func-
tional 6,7 at the function ¢, ;.
Using the equalities (6) and (10) we get

o)
*%

ax’(?’p. k) = f (uo'Pl, kt ul‘PI’.,k) =0

C——

Hence, by a simple transformation (cf. [6]), taking into account (7), (8), (9)

and (12), we obtain that

ey
k

f(—vo,1+u1)k—f (=Voat+um)k=0

C——

k
From this it follows that

[{ y— UI] - k[c_ [ Vos- ]

In each side of the last equality the k-th member of a sequence appears.
The continuity of V,, and the equality V, ,(c) = 0 imply that the limit of the
sequence corresponding to the right-hand side is equal to zero. The same
holds for the sequence corresponding to the left-hand side. Thus, since u,
is a function of first kind, we obtain that

e+t
NG

—hm[[ fu1 f u1]]=u1(c—0)—u1(c+0)

and the equality (4) is proved.
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Now let us turn to the proof of equality (5) for n=2. We shall confine
ourselves to the left limit, the right limit can be treated similarly (see [6]).

We fix an arbitrary number p€2, n and for every k€N\1, k, consider
the value of the functional 4,1 at the function ¢,,. Equalities (6) and (10)
imply that

c+l
k

axl((pp,k) = f (u0¢p,k+u1¢;’7,k+' +up<Pp )_

_1
&

Hence, by repeated integration by parts, applying also the equalities (8),
(9), (10) and (12) (cf. [6]) we obtain that

1
c+p

f{Z(—l)" Vi s +u}k+f (2 V01)<p[(.‘+?—0] 0.

1
e+

¢ ¢p_ . ; ’ |
g fup fz —1PT Vet f (Voa—t) g [c'*‘—k_—o]‘
1 | i=0 J
-1 -1

On each side of the above equation the k-th member of a sequence appe-
ars. Taking into account the continuity of the functions V; 4, the equality
Vi, o(c) = 0, the boundedness of u and the inequality (11), we obtain that the
sequence corresponding to the right hand side tends to zero. The same holds
for the sequence corresponding to the left hand side. Thus, being u, a func-
tion of first kind,

0= lim[k

(4

] = u,(c—0).

|
".l"%h

Theorem 1 is proved. O

In the following we shall use the following generalization of the Du
Bois Reymond lemma.

Lemma. Let m: [a, b]—R be a function of first kind and suppose that for
every he A,

(13) [t =o.

Then there exists an «€R such that

m = a.
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Proof. We shall show that m takes the same value at any of its conti-
nuity points (that is in the whole interval [a, b] except an at most countable
set). [The usual elegant proof of the Du Bois Reymond lemma does not apply
(see [2]). It is expedient to go back to Hilbert’s original idea (see [1], p. 28.)
and use an appropriate variant of the latter (see [4], p. 16. and [8], p. 111.).]

Suppose the contrary to our statement: There exist points «, S€]a, b,
a<p such that m is continuous at both « and g, furthermore, say m(e) >m(g).
Hence it follows that there exist positive numbers d and é (26<p —«) such

that
(14) {m(t)>d, if te[a, atd],
m(ty<d, if te[8—6,B]

We fix an arbitrary positive number k and define a function w: [a, b]-R in
such a way that its value is equal to k at the points of [«, «+ 8], —k at the

points of [8— &, 8] and O elsewhere in [a, b]. Let us define, finally, h: = f o.
Then, by (14) we get that

atp

b B
W=k[ m-k [m=ké—ks=0
frr=rfmr e

which contradicts to (13). Lemma is proved. O

Making use of our Lemma, we obtain the corresponding Du Bois Rey-
mond equation in the usual simple way (see e. g. [9]):

Theorem 2. Suppose that x€ A is a stationary function of the functional
I. Then there exists an «.€R such that

Fax f faXea

3. Remarks

1. For n = 1 a detailed treatment of the problem can be found in [9].
The first part of the proof of Theorem 1 provides another proof of the so
called Weierstrass-Erdmann corner condition.

2. The corner conditions (2) —(3) clearly make sense only if the deriva-
tives of the admissible functions are of first kind or ,,better’”” than that. This
implies that the results of Theorem 1 can not be generalized by extending
the class of admissible functions.

3. In case n>1 the stationary functions of the considered problem for-
mally satisfy the same necessary conditions as for n = 1. This also refers to
the rest of the necessary conditions not considered here (such as the Lagrange
and the Weierstrass conditions etc., cf. [6], [7], [8]). Therefore, the necessary
conditions related to first order problems of calculus of variations are not
characteristic to the first order problem itself, but they also hold for any
higher order problem in which only the continuity of the admissible func-
tions is assumed and not that of their derivatives.
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