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The branch and bound principle as a practical computational procedure
for mixed integer linear programming was first proposed by Land and Doig
[10]. Since then the algorithm and its computational efficiency has been
considerably improved. All the commercial codes for mixed integer linear
programming seem now to be based on this approach (see the survey by
Land and Powell [11]).

The algorithm proposed in the present paper is an adaptation of this
well-known method to the case of linear fractional objective function. On
the basis of the close relationship between the continuous linear and linear
fractional programs it is shown that solving the integer constrained versions
of these problems is essentially also equivalent. The branch and bound tree
can be developed in the same way using any branching strategy applicable
for the linear case, and equivalent, but differently computable penalties can
be imposed on the generated subproblems.

1. Introduction

Optimization problems involving ratios in the objective function —
commonly called fractional programs — have been studied in a conside-
rable number of papers. A comprehensive bibliography of more than 550
publications has been recently published by Schaible [14].

The present paper deals with linear fractional programs (LFP) with
additional integrality constraints imposed on all or some of the variables.

In the last 10— 15 years several papers treating this problem have been
published. Some of them deals with pure integer or specially with (0, 1)
fractional programs. The main approaches are Boolean methods, iterative
parametric methods, cutting planes, implicit enumeration with surrogate
constraints, branch and bound methods etc. For further details we refer to
Schaible’s bibliography [14].

In the general mixed integer case (MILFP), like in mixed integer linear
programming (MILP), the branch and bound (B&B) approach seems to be
the most promising one. Bitran and Magnanti [7] describe a parametric pri-
mal-dual algorithm for LFP, with a proposition to apply this algorithm for
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solving the subproblems and for developing the fathoming tests in a B&B algo-
rithm for MILFP. B&B approaches have been proposed also by Agrawal
[2, 3], Chandra and Chandramohan [8], Agrawal and Chand [4]. Of these
only [8] utilizes the dual of LFP to calculate penalties due to Beale and Small
[5]. This approach applies the Charnes-Cooper transformation [9] on vari-
ables, therefore the branching rules are not straightforward, and the simple
lower and upper bounds of the variables are treated as additional rows in the
simplex tableau.

On the basis of the dual algorithm proposed in the present paper it is
possible not only to calculate the above-mentioned penalties, but also all
the penalty improvements proposed for the linear case by Tomlin [15].
Furthermore, although we also utilize implicitly the Charnes-Cooper linear
programming (LP) equivalent of LFP, the problem and its variables are kept
in their original form, and the simple bounds on the variables are treated
implicitly.

The paper is organized as follows: Section 2 provides the notations and
definitions. In Section 3 a dual algorithm for LFP is outlined. Section 4 deals
with the calculation of penalties. Section 5 contains some conluding re-
marks, and finally, in Section 6 a numerical example, elaborated in detail,
illustrates the algorithm.

The list of references is not meant to be comprehensive; only papers
closely related to the present algorithm are included.

2. Notations, definitions

The mixed integer linear franctional programming problem can be for-
mulated as

2.1 MILFP: 2z, = max{ JO) _ CTx+a xexms},
g(x) d™x+p

where

(2.2) X° = {x€R"|Ax=b, L0=x=U"),

and

(2.3) S = {xeR"|x; integer for j€ J}.

Here A is an (m X n) matrix of real numbers, c, d, L°, U°€R", bcR™, «, B€R,
JEN ={1,2, ..., n}is the index-set of the variables constrained to take on
integer values, the superscript T denotes the transpose, and other super-
scripts are subproblem indices.

Let us denote the continuous relaxation of MILFP by LFP°:
Tx+a

(2.4) LFP°: 2° = max {———
dTx+ B

xeX“}.
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For LFP? the following (common) assumptions are made:
Al: X°%0 and bounded,
A2: dTx+p=0 for all xe X°.

An additional, but not essential assumption on MILFP:

A3: LY=U} are finite integer numbers for j€ J.

The B&B method, as applied to our problem, involves temporarily ig-
noring the constraint x€S and solving a sequence of continuous subproblems.
These all have the same form as LFP?, except that they have different sets
of lower and upper bounds L* and U*.

Let the k-th subproblem be defined as

T
(2.5) LFPk: 2¢ = max {ZT—”% x€ xn},
X+
where
(2.6) Xk = {x€X0|LO= Lk =x= Uk= U0},

at least one of the inequalities Lo Lk, U U* is satisfied, and L* and U*
are integer numbers.

Denote the Charnes-Cooper equivalent of LFP* by LP*:

(2.7) LP¥: maximize cTy + af
subject to

(2.8) Ay —bt=0

(2.9) —y+LX=0
(2.10) y—Ukt=0
(2.11) dTy+pt = 1

(2.12) y=0, t=0,

where LP* is obtained from LFP* by transforming the variables according
tot = 1/(dTx+p8), y = tx.

For notational convenience the coefficient matrix [A, I] of the inequa-
lity Ax=b is rearranged and partitioned as [Ag, Ay], where Ag is the mat-
rix of a basis. [¢T, 0T], [d7, 0T ] and [x7, (b— Ax)T]are partitioned conformally,
introducing the slack variables as part of the vectors xz or xy. Analogous
notations for the elements of U, L, y etc. will be used throughout the paper.

3. A dual algorithm for solving the subproblems

The algorithm proposed here is in fact a technique to solve (at least
partially) the dual of LFP* (i. e. that of LP¥) in terms of the original x vari-
ables. More precisely, a sequence of simplex tableaux analogous to those of
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Martos’ primal method is derived, such that the corresponding solutions are

dual feasible, and the value of the dual objective function is nonincreasing.
The dual of LFP* can be formulated as an ordinary LP problem. (About

duality models of LFP see e. g. [1, 7, 13].)

Let it be denoted by DLP*:

(3.1) DLP*: minimize v
subject to

(3.2) uTA—wl +wl+vdT=cT
(3.3) —uTb+wILk—wiU*k+vB=a
3.4) u=0, w, =0, w,; =0,

where (since DLP* is actually the dual of LP¥) the dual variables u¢R™
belong to the constraints (2.8), véR to (2.11). w, €R" belongs to (2.9) and
w,_,elR" to (2.10), i. e. to the constraints of LFP*: x=L* and x= U¥, respec-
tively.

It is easy to see that if the current value of the denominator for a (not
necessarily primal feasible) basic solution of LFP* is not zero, then (3.3)
in DLP* is satisfied as an equality. (This follows from the theorem of com-
plementary dual variables of linear programming, since in this case the
equivalent basis of LP* must contain ¢ as a basic variable.) Hence from any
basic solution of DLP* with nonvanishing denominator a basic solution of
LFPk can be obtained, too.

Furthermore, having a basis Ag of LFP* with 8’0, the equivalent ba-
sis of LP* is

o[

and the inverse of B can be written as

24T
Az 24T 1y,
(3.6) B-1= g
a7 _1_
g p

where Ap, dg are notations introduced in Section 2, dy= —d}Ag:, b’ = At
and g’ = B+dL A, i. e. B is the current value of the denominator, and
dp, b’ are also obtainable knowing Az! and the initial data of LFP*.

Let an arbitrary basic solution of LFP* be given in the form
3.7 x§ = b’ — Apxk,

where A, = Ag*Ay and x} is the vector of the basic, x¥ that of the nonbasic
variables. As the simple lower and upper bounds are treated implicitly,
x*, may stand for xy;— LN], for Uyj—xyj, or simply for xy;. Similarly,
X§; means xg;— Lg;, if Lg;
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The nominator and the denominator of the objective function can be
written as

(3.8) f=o+ckxk
and
(3.9) g = ' +af'xx.

Suppose B’ =0. (The algorithm is organized in such a way that it should
produce only basic solutions with 8”0.)

The basic solution

(3.10) xp=V,x5=0
is dual feasible, if
1
(3.11) —dy=0,
ﬁ.
where
(3.12) Oy = Bepy—a'dy.

As for the primal feasibility, only those solutions whose equivalent is fea-
sible for LP* are considered primally feasible. For this reason two cases have
to be distinguished:

a) 1f g’>0, then (3.10) is primal feasible, if
(3.13) 0=t =U}L¥,

where U§* = Uk — Lk,

b) 1f /<0, (3.10) must not be feasible (see assumption A2). Here,
unlike in LP, not only some x%;, but also x%, may have infeasible value
(in the sense that the corresponding y variables in LP* are infeasible). It can
easily be seen from the corresponding basic solution of LP* that x¥; (i. e. the
corresponding y%;) is infeasible, if

’ k¥ _ p’
(3.14) either %0 <0 or UB 0L
B B
Furthermore, if Xy, is an upper bounded variable with Uf};>0, then either
k¥
X3 [with YN =% or Uf—x2,; [i. e. the slack variable of (2.10) with
t 3

UK. . .
a value of —=|is infeasible.

ﬂ/
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Let the i-th row of (3.7) be written as either

(3.15) x%, = b/ —al’x%
or
(3.16) Ut —xb; = Ut —b] +aT'xk,

depending on which condition in (3.14) is fulfilled, and denote the j-th ele-
ment of a; by a;, and that of dj, by d;.
The algorithm then can be formulated as follows.
Step 0: Start from a dual feasible basis with g’ =0.
Step 1 (Check for primal feasibility of basic variables):

See, if there exists i for which (3.14) is satisfied.
If yes, go to Step 2, otherwise go to Step 5.

Step 2: If in case of (3.15) either %a,’ =0or a + ;" d},; =0, or in case of (3.16)

4
Ust—b!

either i,a,’so or —aj+ L df,=0, then LFP, has no feasible solu-

tion: go to Step 8.
Otherwise go to Step 3.
Step 3: Calculate

P, = % min [——6; ]
@.17) YUoap b P a/;f’ +bd;
’ ﬂ'
or
(3.18) P, = i -
—a,p + Uk —b)d;
N E
= min 7 NA?
—ay (U b)) — a8+ (ukr — bi)d;
j, 7 <0

Step 4 (Pivoting): a) If a0, then pivoting on a;, a new dual feasible basis
of LFP* is available in the form (3.7). Return to Step 1. b) If a;, = O, the
neighbouring basic solution of DLP* does not correspond to any extremal
point of X* (the new Ag in 3.5 is singular). Go to Step 8.

Step 5 (Check for feasibility of the nonbasic variables): a) If =0, the so-
lution is optimal; go to Step 8. b) If ’<0, see whether there exists a non-
basic xg, with upper bound Ui =0: if none, then either there does not exist
a primal feasible solution with positive denominator, or the feasible region
is unbounded: go to Step 8; if yes, go to Step 6.
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Step 6: Calculate

dq . )
NI EW NI A
AB +URRy  jajer+ulgd)>ol 8"+ UK,
where 4; = 1, if j = r, and 4; = 0 otherwise.

Step 7 (Change of bounds): If there is no ¢ in (3.19), then DLP* is unbounded,
i. e. LFP* has no feasible solution with 8’ >0; go to Step 8.
Otherwise two cases have to be distinguished:

a) If ¢ = r, exchanging the status of x, (from lower bound to upper
or vice versa) the basis remains dual feasible. Go to Step 1.

b) If g>r, the situation is similar to 4b; go to Step 8.

Step 8: End with either a) an optimal solution; or b) a dual feasible solution
(the problem has to be solved by some other algorithm); or ¢) a conclusion
that the problem is infeasible or the feasible region is unbounded.

Comments to the algorithm.

1. The validity of Step 2 follows from the duality theorems of linear prog-
ramming.

2. The algorithm described above is essentially equivalent to the dual simp-
lex algorithm of linear programming as applied to LP¥*. On the basis of
the connection between the corresponding basic inverses of LFP* and LP*
(see (3.6)) any entry of the simplex tableau of LP* can be obtained from
the simplex tableau of LFP*. For example, Steps 3 resp. 6 are minimal
ratio calculations on a row of type (2.8) resp. (2.9) or (2.10) of LPX. In
case of Step 6 the corresponding row of LP* is obtained from the implicit
row x5, =< UKk of LFP¥.

3. In Step 4a the new value of the objective function will be either

o * g
BB B
or
’ k¥ _ ph’ ’
(3:21) « JUE—bip o
B B B
In Step 7a the new value of the objective function will be
’ k% ’
(3:22) e Unip_2
BB B

4. In the singular cases of 4b or 7b the problem cannot be solved by this
algorithm; we have to go on either with the dual simplex method on the
extended tableau of LP* until a basic solution with #0 is attained, and
then return to Step 1 of this algorithm, or with Martos” primal method.
Even in these cases, however, a bound on the value of the primal objective
function can be obtained from (3.20), (3.21) or (3.22).
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5. The notations like x¥ = U;—x; are used only for the sake of notational

convenience; the actual algorithm works with the original variables with a
book-keeping of their status.

4. Calculation of the penalties

Let us assume that the optimal solution of the k-th subproblem does not
satisfy the integrality conditions, i. e. some basic variable x§%; takes on a
non-integer value in the basic solution (3.7) —(3.9). Then xp; can be written
as

(4.1) xk, = bj —al’xy
with
(4'2) bll = n,--H],';

where n;=0 is an integer number and 0<¢g;<1.
The immediate successors of LFP* differ from LFP* only in one of the
bounds of the variable xg;:

(4.3) XK1 = Xk {x€RM| LS = n,+ 1 =xp,=Ul;}
and
(4.9) X2 = Xk {x€R"|Lp;=xp;=n, = Ug*}

The optimal basic solution of DLP* can be obtained from the optimal
basis of LFP*, which is equivalent to that of LP¥. Since x}; is basic in LFP¥,
it follows that wry,, = wyy, = 0 in DLP*; hence changing Ly, or Upg; does

not influence the dual feasibility. (This is not obvious because of (3.3).)
This means that the optimal solution of LFP¥ is dually feasible for LFP*+1
and LFPk+2,

Now it is easy to see that penalties, analogous to those proposed by Beale
and Small [5] for MILP, can be derived for LFP* (i. e. for LFP¥*! and
LFP**2) on the basis of the dual algorithm described in Section 3:

(4.5) PU = min {PU}
j

(4.6) PD = min {PD}
where !

1 — q (S; . ’ ’ ’

PU; = -~ — —, if aj;"+(¢;—1)d;<0
(4.7) TR @ +-neg !
oo otherwise

and
4.8 PD; = |-=T- ,a; o it ayf’+pid;=0
(4.8) B aif +qd;

o otherwise.
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Comparing (4.7) and (4.8) with (3.17) and (3.18), it can be observed that
PU and PD are the decrease of the dual objective function resulting from
implicitly carrying out one step of the dual algorithm on LFP*+1 and LFP*+2,
respectively. Hence

4.9) Vktl<yk_PU = 2¥— PU
(4.10) vkt2<yk—_pPU = 2k— PD

and since 2k+1<yk+1 and 2k+2<vk+2 an upper bound for all integer solutions
of MILFP attainable from the current problem LFP* is

(4.11) 2 =zk¥—min {PU, PD}.

It can be shown that the penalties (4.5) and (4.6) can be improved in
case of MILFP, too, in an analogous way as proposed by Tomlin in [15] for
MILP.

The main point is, as in the linear case, that changing one of the bounds
of xg;, at least one of the non-basic variables must be increased to have a
feasible solution for LFP¥+! or LFP**2. Then we can make use of the fact
that if some non-basic x¥, is not to remain at zero, it must be at least one
in any integer solution.

In the linear case the penalty for increasing a non-basic variable to one
is simply its reduced cost, but in case of a fractional objective function the
rate of change depends also on the value of the function itself, i. e. on the
value of other non-basic variables. A similar, but not so easily computable
penalty still can be given: the penalty for increasing x§; from O to 1 is

-8,
(4.12) PI; = lr AP+ ,>o{ B'(AB +d2) }
loo, if no r with 4,8’ + d; =0 exists,

where 4, = 1forr = jand 4, = Ofor r=j.

Note that (4.12) is analogous to (3.19). It can be obtained by implicitly
carrying out a dual step on the (implicit) row x§,;=1.

Having P1; the up and down penalties (4.5) and (4.6) can be replaced by
the stronger ones

4.13) PU* = min [PUJ‘ f:“]
i \max {PI;, PU} jeJ

4.14) PD* = min [PDf e
i \max {PI,, PD} je]

From the way PU and PD have been calculated it is straightforward
that the overall penalty proposed by Tomlin [15] to be derived from the
Gomory cut for any unsatisfied integer constraint (4.1)—(4.2) can be calcula-
ted, too. This penalty can be obtained by attaching implicitly the supple-

mentary row of the Gomory constraint to LFP* and carrying out, also impli-
citly, a dual step on the extended problem.
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Thus, denoting the above-mentioned penalty by PG, the value 2%, of
the best integer solution obtainable from LFP* is bounded above by

(4.15) Zk =z¢¥—max {PG, min {PU*, PD*}}.
Similarly

(4.16) 2kt <zk—max {PU*, PG}

and

(4.17) 2k+2<2k—max {PD*, PG}.

5. Concluding remarks

As it can be observed this paper has not outlined any actual B&B algo-
rithm for MILFP, only the technique for solving the subproblems and the
calculation of penalties have been described. The reason for this is that other
aspects of solving MILFP do not differ from those of solving MILP. Actually
any branching and backtracking strategy applicable for MILP can be appli-
ed for MILFP, too. Our purpose here was not to investigate the effect of dif-
ferent strategies on the efficiency of the algorithm, but only to show that
the algorithm for MILFP is essentially equivalent to that for MILP.

The algorithm, without any modification, can be applied to solve as
special cases MILP problems, too. The analogy is shown by the fact that
using the same branching and backtracking strategy the same subproblems
are generated, and the primal and dual simplex iterations are the same, too,
as in the case of the MILP algorithm.

The MILFP algorithm with a simple version of branching and back-
tracking strategy has been implemented and tested on the R40 computer
of the Computing Center of E6tvos Lorand University. The test problems
were small MILFP problems and moderate size MILP problems.

6. Numerical example

Consider the problem

maximize 2a+%—2
X, —Xp+ 1
subject to
—5%,+4x,=0
=X+ X,=1/2
2%, +x,=11

0=x,=5, 0=x,=4 required to be integers.
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Introducing the slack variables x,, x, and x; the simplex tableau con-
taining the optimal solution of LFP° is

| X 4-x, |
X, -5 1 | 3/2
X 2 -3 10
X -1 1 7/2
—f 2 -3 -9
—g 1 0 —1/2
8 | -8 -3/2

The value of the objective function corresponding to the solution x, =
=T/2,%y =4,%3 = 3/2,x, = x5 = 0is2° = 18 and §’ = 1/2>0.

Since the value of x, is not integer, i.e. ¢ = 1/2¢0, two subproblems
can be generated by replacing the bounds 0=x;=<5 by 4=x,=<5 for LFP!
and by O=x,=3 for LFP2.

The overall penalty is derived from the Gomory cut:

s=—1/2—[—1, 0][ z; ] =0.
2

The implicit dual step on this row results in
1

P, = =8  _gandPG=—2.8=8
A1 _L
22 2

(see (3.17) and (3.20)).
The penalties for LFP? resp. LFP? are calculated from the third row of
the tableau by means of (4.7), i. e. (4.13) and (4.8) i. e. (4.14), respectively:

PU=min{1/2- 8 ,oo}=8
12 —12-1p2
PU* = PU = 8
PD:min{oo, — 12 _—32 }:3
12 1240

PD* = min {-, max{3,6}} = 6,

since the penalty for increasing x* = x,—4 from O to 1 is given by means of
(4.12) as
8 3/2

_ 6.
T

y Lo
O+1) 2[2+]

1

2

PI,, = min{
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It follows that the upper bounds for the optimal solution are:
29=18-8=10, 24=18-8 =10, 2;=10.

A dual feasible basis of LFP2 is available from that of LFP, by substitu-
ting 3 —x, for x; in the third row of the tableau. Then this row becomes

3—x, | 1 —1] —1/2

and pivoting on the element — 1 as a result of Step 3 of the dual algorithm the
optimal tableau of LFP? is

X, 3—x,
Xg | —4 1 1
x5 | —1 -3 3/2
X, 1 1 7/2
—f1 -1 -3 —15/2
—g 1 0 —1/2
6| -8 -3/2

Now x, is basic and not an integer. The subproblems of LFP? are ge-
nerated by replacing the bounds O=x,=<4 by 4=x,=<4 for LFP? and by
0=x,=<3 for LFP4.

It is obvious that the constraint
Xy—4 = — 1, 1]["4 ]Zo
2 3—x,

cannot be satisfied with x,=0, 3—x,=0; therefore LFP? has no feasible solu-
tion and can be fathomed (PU = ).

Calculating the penalties for the successors of LFP2, PG = 8, PD = 3,

PD* = 6, the upper bound for any integer solution obtainable from LFP4
is 24=<15-8= 1.

A dual feasible basis of LFP* is obtained by substituting the row
3—x,| —1 —1| =1/2

|

for the third row of the optimal tableau of LFP2.
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Then solving this problem by the dual method the optimal tableau of LFP*
is

Xy 3—x,
X3 | —5 1] 1/2
X5 2 -3 3
x | —1 1] 5/2
—f] 2 -3 |—-6
—g| 1 0|-1/2
d | =5 -3/2

Here x; does not satisfy the integrality restriction, therefore the bounds
0=x;=3 are replaced by 3=x,=3 for LFP% and by O0=x, =<2 for LFP®. The
overall penalty for the successors of LFP% is PG = 5, and the penalties for
the subproblems are PU = PU* =5 for LFP%, PD =3, PD* =6 for
LFPS.

The optimal solution of LFP% yields an integer solution x;, = x, = 3,

X3 =3,%X, = i, x; = 2. The value of the objective function is 2§ = 7.
2

Considering now the pending subproblems LFP! and LFPS, it can be
seen that LFP® can be fathomed (2% =<z*—PD* = 12—6 = 6), but LFP*
may yield potentially better integer solutions than the best one found so far.

Therefore x, in the third row of the optimal solution of LFP, has to be

replaced by

x—4] —1

1

|—1/2

As a result of Steps 3 and 4 of the dual algorithm the basic solution

x,—4 4—x,
X3 | =5 -4 4
Xs 2 —-1|-1
x, | —1 -1 1/2
—fl 2 -1]-10
—g| 1 1] -1
o -8 —11

is obtained, which is still primally infeasible. Pivoting on the element —1
in the row of x5, P; of (3.17) would be P; = —121—, therefore by means of (3.20)

it is immediately seen that

9 ANNALES - Sectio Computatorica — Tomus VII.



130 ILDIKO ZSIGMOND

1szlsv1510+( D 1ip) = Z<z;=7,

that is LFP! can be fathomed and z, =7 is the optimal solution of the prob-
lem.
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