ON L₁-MEAN OSCILLATING RANDOM VARIABLES

N. L. BASSILY and S. ISHAK Ain Shams University, Cairo, Egypt

(Received August 13, 1985)

1. The \mathcal{K}_p -spaces are treated e.g. in the book by A. M. Garsia [1]. Let $X \in L^1(\Omega, \mathcal{A}, P)$ be a random variable defined on the probability space (Ω, \mathcal{A}, P) and consider the regular martingale

$$X_n = E(X|\mathcal{F}_n), n \ge 0,$$

where $\{\mathcal{F}_n\}$, $n \ge 0$, is an increasing sequence of σ -fields of events such that

$$\mathscr{F}_{\infty} = \sigma \bigg(\bigcup_{n=0}^{\infty} \mathscr{F}_n \bigg) = \mathscr{A}.$$

We suppose that $X_0 = 0$ a.s. We denote by $d_0 = 0$, d_1 , d_2 , ... the difference sequence corresponding to the martingale (X_n, \mathcal{F}_n) .

For $1 \le p \le +\infty$ set

$$\Gamma_X^{(p)} = \{ \gamma \colon \gamma \in L_p E, \ (|X - X_{n-1}| | \mathcal{F}_n) \le E(\gamma | \mathcal{F}_n) \text{ a. s., } \forall n \ge 1 \}.$$

We say that $X \in \mathcal{X}_p$ if the set $\Gamma_X^{(p)}$ is not empty and in this case we let

$$||X||_{\mathcal{X}_p} = \inf_{\gamma \in \Gamma_{\mathcal{Y}}^{(p)}} ||\gamma||_p.$$

It easily can be seen that $\|\cdot\|_{\mathcal{X}_p}$ is a semi-norm on \mathcal{X}_p . The space \mathcal{X}_{∞} is the well-known BMO₁-space.

In [2] we generalized this notion in the following way. Consider a pair (Φ, Ψ) of conjugate Young functions and put

$$\Gamma_X^{(\phi)} = \{ \gamma : \gamma \in L^{\phi}, \ E(|X - X_{n-1}| | \mathcal{F}_n) \le E(\gamma | \mathcal{F}_n) \text{ a. s., } \forall n \ge 1 \}.$$

We say that $X \in \mathcal{X}_{\varphi}$ if the set $\Gamma_{\varphi}^{(\varphi)}$ is not empty. In this case we let

$$||X||_{\mathcal{X}_{\varphi}} = \inf_{\gamma \in \Gamma_{X}^{(\varphi)}} ||\gamma||_{\varphi},$$

where $\|\cdot\|_{\sigma}$ denotes the Luxemburg norm in the Orlicz space L^{σ} . For the definition of the Young functions, Orlicz spaces and Luxemburg norms we refer to [3] and [4]. We easily prove that $\|\cdot\|_{\mathcal{X}_{\sigma}}$ is a semi-norm on \mathcal{X}_{σ} .

We say that the random variable X belongs to the Hardy space \mathcal{H}_{Φ}

if

$$S = S(X) = \left(\sum_{i=1}^{\infty} d_i^2\right)^{1/2} \in L^{\phi},$$

or in other words $||S||_{\Phi} < +\infty$. In this case we write $||X||_{\mathcal{H}_{\Phi}} = ||S||_{\Phi}$.

Since the Young functions Φ cannot be linear, the space L_1 is not contained amongst the Orlicz spaces. Therefore we define the Hardy space \mathcal{B}_1 as the set of all the random variables X for which $||S||_1 < +\infty$. In this case we let $||X||_{\mathcal{B}_1} = ||S||_1$.

We recall the definition of the power of a Young function Φ . Let $\varphi(x)$ be the right hand side derivative of Φ . Then the quantity

$$p = \sup_{x>0} \frac{x\varphi(x)}{\varphi(x)}$$

is called the power of Φ . The finiteness of p is equivalent to say that Φ satisfies the so called Δ_2 -condition. We define similarly the power q of the conjugate Young function $\Psi(x)$.

The inequality of Burkholder-Davis-Gundy says that if p is finite then $X \in \mathcal{H}_{\Phi}$ if and only if $X^* = \sup_{n \geq 0} |X_n| \in L^{\Phi}$ (cf. [5]). Also, Davis' inequality states that $X \in \mathcal{H}_1$ if and only if $X^* \in L^1$.

In paper [2] we proved if both Φ and Ψ have finite power then $X \in \mathcal{X}_{\Phi}$ is equivalent to the fact that $X \in \mathcal{X}_{\Phi}$, or in other words $X^* \in L^{\Phi}$. For the pair $\left(\frac{X^p}{p}, \frac{X^q}{q}\right)$ of conjugate Young functions, where p > 1 and $p^{-1} + q^{-1} = 1$

this fact has essentially been established by Garsia in [1] (Theorem III. 5.2.). The space \mathcal{K}_1 is less studied. We only know that $\mathcal{K}_1 \subset \mathcal{K}_1$. In fact, if $X^* \in L^1$, then

$$E(|X-X_{n-1}||\mathcal{F}_n) \leq E(2X^*|\mathcal{F}_n), n \geq 1.$$

Consequently, $\Gamma_X^{(1)}$ is not empty, since $X^* \in L^1$ and so $2X^* \in \Gamma_X^{(1)}$. The reverse implication, i.e. $\mathcal{K}_1 \subset \mathcal{B}_1$, is false. Here is a counterexample. Consider a nonnegative random variable X belonging to L_1 . Let $X_n = E(X | \mathcal{F}_n)$, $n \ge 0$ be the corresponding martingale. Also let $X_n' = X_n - X_0$, $n \ge 0$. Then (X_n', \mathcal{F}_n) is also a martingale. Suppose we have chosen such an X that the limit $X - X_0$ of $X_n - X_0$ does not belong to \mathcal{B}_1 but at the same time $|X_{n+1}' - X_n'| \le 1$ a.s. We show that $X - X_0$ belongs to \mathcal{K}_1 . In fact,

$$E(|X - X_0 - X'_{n-1}| | \mathcal{F}_n) = E(|X - X_{n-1}| | \mathcal{F}_n) \le E(|X - X_n| | \mathcal{F}_n) + |X_n - X_{n-1}| \le E(X|\mathcal{F}_n) + E(X|\mathcal{F}_n) + |X'_n - X'_{n-1}| \le E(2X + 1/\mathcal{F}_n),$$

which shows that $X - X_0 \notin \mathcal{H}_1$ and that $X - X_0 \in \mathcal{X}_1$ (cf. e.g. [1], p. 122.).

In what follows we shall use a maximal inequality which is proved in [2]. We state it in the form of the following

Theorem 1. Let (X_n, \mathcal{F}_n) be a martingale and let $\gamma \in L^1$ be a random variable such that for every $n \ge 1$ we have

$$E(|X-X_{n-1}| |\mathcal{F}_n) \leq E(\gamma |\mathcal{F}_n)$$
 a.s.

Then for arbitrary $\beta > \alpha > 0$ we have

$$(\beta - \alpha)E(\chi(X_n^* \ge \beta)) \le E(\gamma\chi(X_n^* \ge \alpha)).$$

Here $\chi(A)$ denotes the indicator function of the event A.

2. About the behaviour of the random variables belonging to \mathcal{X}_1 we can prove the following

Theorem 2. If $X \in \mathcal{X}_1$ then X^* is a.s. finite. Moreover, for arbitrary $\lambda > 0$ we have the inequality

$$\lambda P(X^* \ge \lambda) \le 2||X||_{\chi_1}$$

Proof. We use the inequality of Theorem 1. According to this if $\beta > \alpha > 0$ and if $X \in \mathcal{X}_1$ then with arbitrary $\gamma \in \Gamma_{\mathbf{v}}^{(1)}$ we have

$$(\beta - \alpha)E(\chi(X^* \ge \beta)) \le E(\gamma\chi(X^* \ge \alpha)).$$

Choose $\beta = 2\alpha$. Then

$$\alpha P(X^* \ge 2\alpha) \le E(\gamma)$$
.

Since $\gamma \in \Gamma^{(1)}$ is arbitrary from this we get

$$\alpha P(X^* \geq 2\alpha) \leq ||X||_{\mathcal{X}_1},$$

or, in other words

$$2\alpha P(X^* \ge 2\alpha) \le 2\|X\|_{\mathcal{X}_1}.$$

Taking $\lambda = 2\alpha$ we obtain our inequality.

Further, since

$$P(X^* = + \infty) = \lim_{\lambda \to +\infty} P(X^* \ge \lambda),$$

the inequality just proved shows that

$$P(X^* = +\infty) \leq 2||X||_{\mathcal{X}_1} \lim_{\lambda \to +\infty} \frac{1}{\lambda} = 0.$$

This means that $P(X^* < +\infty) = 1$. \square

3. When at least one of Φ and Ψ have no finite power then we cannot prove the equivalence of the norms $\|\cdot\|_{\mathcal{X}_{\Phi}}$ and $\|\cdot\|_{\mathcal{X}_{\Phi}}$. Assuming only the finiteness of the power p of Φ we are able to prove the validity of the following inequality: if $X \in \mathcal{X}_{\Phi}$, P(X = 0) < 1, then with arbitrary constants c > 1 and $\varrho > 1$ we have

$$(\varrho-1)E\left(\Psi\left(\varphi\left(\frac{X_n^*}{\varrho A\frac{c}{c-1}\|X\|_{\mathcal{X}_{\varphi}}}\right)\right)\right)\leq 1.$$

Here A = A(c) is the number for which

$$\varphi(ct) \leq A\varphi(t)$$

is satisfied for every t>0.

In these considerations the Young function Φ is "far" from the linear function. Namely, $\Phi(x)/x$ tends increasingly to $+\infty$ as $x + +\infty$. So, it is of interest to consider separately the case of the linear function, too. In analogy with the classical result of Doob stating that $X \in \mathcal{B}_1$ whenever $X \in L \log L$ we can deduce the following

Theorem 3. Suppose that $X \in \mathcal{K}_{\Phi}$, where $\Phi(x) = x \log^+ x$. Then $X \in \mathcal{B}_1$ and we have

$$E(X_n^*) \leq \frac{12e}{e-2} (e + ||X||_{\mathcal{X}_{x\log^+ x}}) \log (e + ||X||_{\mathcal{X}_{x\log^+ x}}).$$

Proof. For the proof we use the inequality of Theorem 1. Choosing $\beta = 2\alpha$ we get

$$\alpha E(\chi(x_n^* \ge 2\alpha)) \le E(\gamma \chi(x_n^* \ge \alpha)),$$

where $\gamma \in \Gamma_X^{(\phi)}$ is arbitrary. Multiply this inequality by $1/\alpha$ and integrate with respect to α on the interval $[1, +\infty)$. Then

$$E\left(\left(\frac{X_n^*}{2}-1\right)^+\right) \leq E(\gamma \log^+ X_n^*),$$

or, in other words,

$$\frac{1}{\max\left(e,\|\gamma\|_{\varPhi}\right)}E\left(\left(\frac{X_{n}^{*}}{2}-1\right)^{+}\right) \leq E\left(\frac{\gamma}{\max\left(e,\|\gamma\|_{\varPhi}\right)}\log^{+}X_{n}^{*}\right).$$

Using the elementary inequality

$$a \log^+ b \le a \log^+ a + \frac{b}{e}$$

which is valid for arbitrary $a \ge 0$ and $b \ge 0$ we obtain on the right-hand side

$$\frac{1}{\max\left(e, \|\gamma\|_{\Phi}\right)} E\left(\left(\frac{X_{n}^{*}}{2} - 1\right)^{+}\right) \leq E\left(\frac{\gamma}{\max\left(e, \|\gamma\|_{\Phi}\right)} \log^{+} \frac{\gamma}{\max\left(e, \|\gamma\|_{\Phi}\right)} + \frac{X_{n}^{*}}{e \max\left(e, \|\gamma\|_{\Phi}\right)} + \frac{\gamma}{\max\left(e, \|\gamma\|_{\Phi}\right)} \log^{+} \max\left(e, \|\gamma\|_{\Phi}\right)\right).$$

Note that

$$\frac{X_n^*}{2} \leq \left(\frac{X_n^*}{2} - 1\right)^+ + 1.$$

From this and from the above inequlity

$$\frac{1}{2 \max (e, \|\gamma\|_{\boldsymbol{\sigma}})} E(X_n^*) \le 2 + \frac{1}{e \max (e, \|\gamma\|_{\boldsymbol{\sigma}})} E(X_n^*) + \frac{E(\gamma) \log \max (e, \|\gamma\|_{\boldsymbol{\sigma}})}{\max (e, \|\gamma\|_{\boldsymbol{\sigma}})},$$

since

$$\log^{+} \max(e, ||\gamma||_{\varphi}) = \log \max(e, ||\gamma||_{\varphi}).$$

This implies that

$$\frac{e-2}{2e}E(X_n^*) \leq 2 \max(e, \|\gamma\|_{\varphi}) + E(\gamma) \log \max(e, \|\gamma\|_{\varphi}).$$

Now we show that

$$E(\gamma) \leq 4 \|\gamma\|_{\varphi}.$$

In fact, in case of any Young function Φ we have for every x>0 the inequality

$$\Phi(x) \ge (x - x_0)\varphi(x_0),$$

where $x_0>0$ satisfies $\varphi(x_0)>0$. Here, as usual, φ denotes the right-hand side derivative of Φ . Consequently, for arbitrary $Y\in L^{\Phi}$ such that P(Y=0)<0 we see that

$$1 \ge E\left(\Phi\left(\frac{|Y|}{\|Y\|_{\Phi}}\right)\right) \ge \varphi(\chi_0)E\left(\left(\frac{|Y|}{\|Y\|_{\Phi}} - \chi_0\right)^+\right).$$

Using the inequality $x \le (x - x_0)^+ + x_0$ from the preceding inequality we get

$$E\left(\frac{|Y|}{\|Y\|_{\boldsymbol{\sigma}}}\right) \leq \frac{1}{\varphi(x_0)} + x_0,$$

or, in other words

$$E(|Y|) \leq \left(\frac{1}{\varphi(x_0)} + x_0\right) ||Y||_{\varphi}.$$

Now, turning to our case, we have $\varphi(x) = 1 + \log x$, if $x \ge 1$ and $\varphi(x) = 0$ if x < 1. Consequently, choosing $x_0 = e$ we get $\varphi(x_0) = 1 + \log e = 2$. So,

$$E(\gamma) \leq \left(\frac{1}{2} + e\right) \|\gamma\|_{\Phi} \leq 4 \max(e, \|\gamma\|_{\Phi}).$$

Comparing this with the inequality above we get

$$\frac{e-2}{2e}E(X_n^*) \le 6 \max(e, \|\gamma\|_{\mathscr{O}}) \log \max(e, \|\gamma\|_{\mathscr{O}}),$$

which implies the inequality

$$E(X_n^*) \le \frac{12e}{e-2} \Big((e + ||X||_{\mathcal{X}_{\Phi}}) \log (e + ||X||_{\mathcal{X}_{\Phi}}) \Big).$$

This proves the assertion. \Box

Remark. $\Phi(x) = x \log^+ x$ will be a Young function only in the case when we define its right hand side derivative $\varphi(x)$ to be right continuous at x = 1. This means that $\varphi(+1)$ must be equal to 1.

As usual, we say that $X \in L \log L$ if $E(|X| \log^+ |X|) < +\infty$. Consider the set

$$\Gamma_X'^{(\mathsf{x} \log^+ \mathsf{x})} = \{ \gamma : \gamma \in L \log L, E(|X - X_{n-1}| | (\mathcal{F}_n) \leq E(\gamma) | (\mathcal{F}_n) \text{ a. s. } \forall n \geq 1 \}.$$

Then $\Gamma_X'^{(x \log^+ x)}$ is a subset of $\Gamma_X^{(x \log^+ x)}$ and we have

$$\|\gamma\|_{x \log^+ x} \leq \max \left(1, E(\gamma \log^+ \gamma)\right).$$

In fact, if $\gamma \in \Gamma_X^{\prime(X \log^+ X)}$, then $E(\gamma \log^+ \gamma) < +\infty$. Consequently, if $E(\gamma \log^+ \gamma) > 1$ then by the convexity of $\Phi(x) = x \log^+ x$,

$$E\left(\frac{\gamma}{E(\gamma \log^+ \gamma)} \log^+ \frac{\gamma}{E(\gamma \log^+ \gamma)}\right) \leq \frac{1}{E(\gamma \log^+ \gamma)} E(\gamma \log^+ \gamma) = 1.$$

If, conversely, $E(\gamma \log^+ \gamma) \le 1$, then trivially $||\gamma||_{x \log^+ x} \le 1$. Therefore,

$$\|\gamma\|_{x \log^+ x} \leq \max(1, E(\gamma \log^+ \gamma)).$$

It seems to be interesting to deduce an inequality, like the preceding one for $E(X_n^*)$ in case of the class $\Gamma_X'^{(x \log^+ x)}$. It can be shown that in this case the inequality to be proved is simpler than that of the preceding assertion.

Theorem 4. Let X be a random variable and suppose that the set $\Gamma_X'^{(x \log^+ x)}$ defined by the formula

$$\Gamma_X^{\prime(\mathbf{x}\log^+\mathbf{x})} = \{ \gamma : \gamma \in L \log L, E(|X - X_{n-1}| \mid \mathcal{F}_n) \le E(\gamma \mid \mathcal{F}_n) \text{ a. s. } \forall n \ge 1 \}.$$

is not empty. Then $X \in \mathcal{H}_1$ and we have

$$E(X_n^*) \leq \frac{\ell-2}{2\ell} \left(1 + \inf_{\gamma \in \Gamma_X'(x \log^+ x)} E(\gamma \log^+ \gamma)\right).$$

Proof. Again, we shall use the inequality

$$(\beta - \alpha)E(\chi(X_n^* \ge \beta)) \le E(\gamma\chi(X_n^* \ge \alpha))$$

and we choose $\beta=2\alpha$. Here $\gamma\in\Gamma_X'(x\log^+x)$ is arbitrary. Then

$$\alpha E\left(\chi\left(\frac{X_n^*}{2} \ge \alpha\right)\right) \le E\left(\gamma\chi(X_n^* \ge \alpha)\right).$$

Integrate this with respect to the measure $d\alpha/\alpha$ on the interval [1, $+\infty$). We then get

$$E\left(\left(\frac{X_n^*}{2}-1\right)^+\right) \leq E(\gamma \log^+ X_n^*) \leq E\left(\gamma \log^+ \gamma + \frac{X_n^*}{e}\right).$$

From this

$$\frac{e-2}{2\rho}E(X_n^*) \le 1 + E(\gamma \log^+ \gamma)$$

and finally

$$E(X_n^*) \leq \frac{2e}{e-2} \left[1 + \inf_{\gamma \in \Gamma_X'(\mathbf{x} \log^+ x)} E(\gamma \log^+ \gamma)\right].$$

This proves the assertion.

REFERENCES

- [1] Garsia A. M.: Martingale Inequalities. Seminar Notes in Recent Progress. Benjamin, Reading (Massachusetts), 1973.
- [2] Bassily N. L. and Mogyoródi J.: On the Xo-spaces with general Young function.

 Annales Univ. Sci. Budapest., Sectio Mathematica. 27 (1984), 205-214.
- [3] Neveu J.: Discrete Parameter Martingales. North Holland, Amsterdam, 1975.
- [4] Krasnoselskii M. A. and Rutickii Ya. B.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen, 1961.
- [5] Burkholder D. L.: Distribution function inequalities for martingales. The Annals of Probability 1 (1973), 19-42.