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1. The X -spaces are treated e.g. in the book by A. M. Garsia [1]. Let
XelYQ, o, P) be a random variable defined on the probability space
L, o, P) and consider the regular martingale

X, = E(X|(F,), n=0,

where {(F,}, n=0, is an increasing sequence of o-fields of events such that
(Fe= [ U fﬁ.] ot.

We suppose that X, = 0 a.s. We denote by d, = 0, d,, d,, . . . the difference
sequence corresponding to the martingale (X, (F,).
For 1=p=<+4 o set

® =y yeLE, (IX—Xou||Fn)=EQ|Fo)a. s, Vn=1).
We say that X € X, if the set I"{ is not empty and in this case we let
XNz, = inf |yl

I
véx

It easily can be seen that |- %, is @ semi-norm on X, The space X.. is the
well-known BMO,-space.

In [2] we generalized this notion in the following way. Consider a pair
(P, P) of conjugate Young functions and put

rQ = {y:yel?, E(|X-X, || F)=E(y|Fr)a. s, ¥n=1}
We say that X¢€ X if the set I'® is not empty. In this case we let

[ Xllzp = inf ||y[le,
veri®

where ||l denotes the Luxemburg norm in the Orlicz space L?. For the
definition of the Young functions, Orlicz spaces and Luxemburg norms we
refer to [3] and [4]. We easily prove that || ||x, is a semi-norm on X,.



80 N. L. BASSILY —S. ISHAK

We say that the random variable X belongs to the Hardy space s
if
o 1/
§ =S(X)= (Z d,z] 2cLe,
i=1

or in other words ||S|je < + == . In this case we write || X||x, = [|Slls.

Since the Young functions @ cannot be linear, the space L, is not con-
tained amongst the Orlicz spaces. Therefore we define the Hardy space %,
as the set of all the random variables X for which ||S||; < 4 - . In this case
we let | X||z, = [IS],. ,

We recall the definition of the power of a Young function @. Let ¢(x) be
the right hand side derivative of @. Then the quantity

p = sup Xpx)
x>0 g(X)

is called the power of @. The finiteness of p is equivalent to say that @ satis-
fies the so called 4,-condition. We define similarly the power ¢ of the conju-
gate Young function ¥(x).

The inequality of Burkholder-Davis-Gundy says that if p is finite then
X €%, if and only if X* = sup | X,1€L® (cf. [5]). Also, Davis’ inequality

states that X ¢, if and only 1f X*EL1
In paper [2] we proved if both @ and ¥ have finite power then X¢ X,
is equivalent to the fact that X€Js, or in other words X*¢ L?. For the

. [ XP X9 . .
pair |——, ——| of conjugate Young functions, where p>1and p~1+¢~1=1

p q
this fact has essentially been established by Garsia in [1] (Theorem II1I. 5.2.).
The space X, is less studied. We only know that Z,c X,. In fact, if
X*e L1, then

E(1X ~ X,y | | F )= EQX*|Fy), n=1.

Consequently, I')) is not empty, since X*¢L*and so 2X*€I'{D. The reverse
implication, i.e. X, 4, is false. Here is a counterexample. Consider a non-
negative random variable X belonging to L,. Let X, = E(X|(¥,), n=0
be the corresponding martingale. Also let X, = X - X, n>0 Then (X,, (F,)
is also a martingale. Suppose we have chosen such an X that the limit X — X,
of X,—X, does not belong to Z, but at the same time |X;,, — X’[<1
a.s. We show that X — X, belongs to X,. In fact,

E(|X = Xo= X1 | |Fn) = E(JX = X || Fo) = E(| X = X, | |Fa) +
+ [ Xn = Xnoa| SEX|Fp) + EXIFp) + | X — X[ | <E@X + 1),

which shows that X — X,¢ 7%, and that X — X,€ X, (cf. e.g. [1], p. 122.).
In what follows we shall use a maximal inequality which is proved in
[2]. We state it in the form of the following
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Theorem 1. Let (X, (F,) be a martingale and let y€ L* be a random variab-
le such that for every n=1 we have

E(|X_Xn—1| V?n)SE(yl(}n) a.s.
Then for arbitrary 8 =>o=>0 we have

(B—)E(x(X*=p))=E(ya(X*=w)).
Here 4(A) denotes the indicator function of the event A.

2. About the behaviour of the random variables belonging to X, we
can prove the following

Theorem 2. If X< X, then X* is a.s. finite. Moreover, for arbitrary A=0
we have the inequality
AP(X*=2)= 2| X||x,-

Proof. We use the inequality of Theorem 1. According to this if §=>a>0
and if X¢X, then with arbitrary yeI'Q we have
(B - )E(u(X*=p)) = E(yy(X*=wa)).
Choose 8 = 2o. Then
aP(X* = 20) =< E(y).
Since yeI'M is arbitrary from this we get
aP(X* = 20) = | X] 2,5

or, in other words
20 P(X* = 20) = 2|| X ||z,

Taking 4 = 2« we obtain our inequality.
Further, since

P(X* = + )= lim P(X*=12),
A+t oo

the inequality just proved shows that
P(X* = 4+ «)=2|X||x, lim 1 0.
Aeton )

This means that P(X*<+~)=1. O

3. When at least one of @ and ¥ have no finite power then we cannot
prove the equivalence of the norms |||z, and |- [z, Assuming only the

finiteness of the power p of @ we are able to prove the validity of the follo-
wing inequality: if X¢Xp, P(X = 0)<1, then with arbitrary constants
¢>1and g>1wehave

X3
(e— I)E(W(qJ( QALI“X“% )))s 1.
c-—
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Here A = A(c) is the number for which

g(ct) = Ag(t)
is satisfied for every t=0.

In these considerations the Young function @ is ,,far” from the linear
function. Namely, @(x)/x tends increasingly to + e« as x + + <. So, it is of
interest to consider separately the case of the linear function, too. In analogy
with the classical result of Doob stating that X¢7, whenever X¢LlogL
we can deduce the following

Theorem 3. Suppose that X € Xs, where @(x) = x logtx. Then X0,
and we have

12¢
e—2

B =2 e+ 11X 200+ 108 (€ [ Xl 2y 1oges )

Proof. For the proof we use the inequality of Theorem 1. Choosing
f = 2o we get

«E(y(x} = 20)) < E(yy(x¥ = a)),

where y€I'® is arbitrary. Multiply this inequality by l/x and integrate
with respect to « on the interval [1, + o). Then

* +
E[[ X2" - 1] ]sE(y log* X%,

or, in other words,

et (5 = ()

Using the elementary inequality

alogtb=alogt a+£
e

which is valid for arbitrary a=0 and b =0 we obtain on the right-hand side

*
) | o e B
max (e, [|ylle) 2 max (e, [ly|ls) max (e, [lylle)
X + Y
emax (e, [ylle) max(e, |ylle)

log* max (e, ||y||¢)]-

Note that

X% (XX )
> 5[ 5 —1] +1.
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From this and from the above inequlity

L E(X*)<2+ I E(X*) +
2 max (e, ||yllo) (X2) emax (e, |y|le) (X2)
E(y) log max (¢, ||y|lo) ’
max (¢, [lylle)

since
log+ max (g, ||ylle) = log max (e, ||yle).
This implies that

s [I7ll2) + E(y) log max (e, ||7[l)-
2e

Now we show that

E(y)=A4llylo-
In fact, in case of any Young function @ we have for every x>0 the inequality

D(x) = (X — Xo)P(Xo),

where x,>0 satisfies @(x,)=0. Here, as usual, ¢ denotes the right-hand side
derivative of @. Consequently, for arbitrary Y €L?® such that P(Y = 0)<0

we see that
IZE[ [nlvyulo]] #)’ [[nlan x°] ]

Using the inequality x=(x—x,)* +x, from the preceding inequality we get
E[——lﬂ] = L + Xo»
1Ylle ) @lxo)
S

E(IYI)s[(p(L

Now, turning to our case, we have ¢(x) = 1+log x, if x=1 and ¢(x) = O if
x < 1. Consequently, choosing x, = e we get ¢(x,) = 1+loge = 2. So,

E(y)= [% N e][]yl|¢s4 max (&, [lyllo).

or, in other words

Comparing this with the inequality above we get

l[7lle) log max (e, {[yle),

8%
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which implies the inequality
12e
e—2

This proves the assertion. [

Remark. &(x) = x log*x will be a Young function only in the case when
we define its right hand side derivative @(x) to be right continuous at x = 1.
This means that (4 1) must be equal to 1.
As usual, we say that X¢L log L if E(]X| log*|X|)< + . Consider the set

ryioet ) = {yiye Llog L, E(|X — X,y | | F)=EG) F) as. vn=1),
Then F;((x log* ) js a subset of Fg}‘ log* ) and we have

E(XH=

(€ 11x0) g e+ [Xlz,).

[17llx 1og+ x = max (1, E(y log* y)).
In fact, if peI'y*Xle* X then E(ylogTy)<+ . Consequently, if
E(ylog*y)=1 then by the convexity of ®(x) = x log*x,
4 + 4 - o) —
E[E(y log* y) 8 E(y log* 7)]_ E(y log* y) Elyiog™) = 1.
If, conversely, E(y log*y)=1, then trivially ||y« 10g+ x=1. Therefore,
¥llx 10g* x=max (1, E(ylog* 9)). O

It seems to be interesting to deduce an inequality, like the preceding one
for E(XF) in case of the class 1"\ 1°6* X, 1t can be shown that in this case the
inequality to be proved is simpler than that of the preceding assertion.

Theorem 4. Let X be a random variable and suppose that the set I\ 16" )
defined by the formula

Iixlog*x) = {y:yeLlog L,E(| X — X, || F)=E(y|(Fn) a.s. ¥n=1}.
is not empty. Then X € 76, and we have

=2 (14 int  E(ylog* ).
2e yep’)((x log* x)

E(X*)=

Proof. Again, we shall use the inequality
(B—0)E(x(X}=B))=E(ya(X} =)
and we choose 8 = 2«. Here y€I"}(*1°6* ) is arbitrary. Then

aE[ x[ );75 20(]]5E(yx(X,"f2a)).

Integrate this with respect to the measure da/a on the interval [1, + ).
We then get

* + *
E[[ X2" - 1] ]sE(y log* X;‘f)sE[y log* y+X—"].
[4
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From this

e—2
2e

E(X%)=1+E(ylog* y)

and finally
2e

e— (x log* x
‘yEI"X

E(X¥H=

This proves the assertion. [

REFERENCES

[1+ inf  E(ylog* ¥)].
)

[1] Garsia A. M.: Martingale Inequalities. Seminar Notes in Recent Progress. Benjamin,

Reading (Massachusetts), 1973.

[2] Bassily N. L. and Mogyorddi J.: On the Xe-spaces with general Young function,

Annales Univ. Sci. Budapest., Sectio Mathematica. 27 (1984), 205 —214.
[3] Neveu J.: Discrete Parameter Martingales. North Holland, Amsterdam, 1975.

[4] Krasnoselskii M. A. and Rutickii Ya.B.: Convex Functions and Orlicz Spaces.

Noordhoff, Groningen, 1961.

[51 Burkholder D. L.: Distribution function inequalities for martingales. The Annals of

Probability 1 (1973), 10 —42.








