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Abstract. A hydraulic-mathematical model in form of a coupled pair of a
partial and of an ordinary differential equation describing the clogging pro-
cess of depth filters is introduced. Existence and uniqueness of solution is
shown and a numerical method is proposed.

1. Introduction

As a result of technological development a new type of filter with coar-
se-granulation porous, flexible, plastic bed was introduced for the purifica-
tion of waste waters of the transport industry (service stations, factories
etc.). In such type of waste waters liquid, solid and oil particles can be found
in a form of a special suspension.

In depth filters a large portion of the filter bed is taking part in the filt-
ration process and the efficiency is substantially higher than that of a sand
filter working on the surface filtration principle.

For the reliable dimensioning of the filters and the determination of the
length of periods of the regeneration (backwashing) one has to characterize
the hydraulic process of the depth filtration, i.e. the seepage flow in a satu-
rated porous and compressible medium.

In this paper we are introducing a hydraulic-mathematical model des-
cribing the change of the concentration of the suspension flowing through the
filter and the clogging process of the filter, in a special case of depth filtration.

In Section 2 the model is set up consisting of a system of partial diffe-
rential equations. In Section 3 the existence and the uniqueness of the solu-
tion of the problem is established. In Section 4 an approximate solution is
given and a computer program is presented to implement the results nume-
rically.

2. The description of the model

We assume that the depth filter is of cylindrical (or prismatical) form
and its length is L. Contrary to what is usual, we do not measure length along
the filter in back current. In what follows the zero point is the one where
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the waste water enters the filter and the point L is where it is getting out
after filtration. This convention makes the handling of the mathematical
formalism easier.

The equation of continuity in its simplest form can be stated [1] as

oQ ds
- = +—,

ox ot
where Q[L3T ~1] is the discharge (the sum of the discharges of the liquid and
the solid components), x[L] is the length, s[L?] is the average cross-sectional
area of the seepage cores and {[T] is the time. Substituting the values of the

specific discharge ¢ = Q/F[LT '] and of the porosity of the filter m = s/F,
where F[L?] is the cross-sectional area of the filter, we obtain

(2.1)
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Let us recall that the porosity of the filter can be expressed as
m = my(1—-¢&)

where my, is the original porosity (i. e. the ratio of the volume of the original
cores to the volume of the filter) and £ is the colmation porosity (i.e. the
specific volume of the settled particles in the process of filtration).

The specific discharge is the sum of the specific discharges of the liquid
and the solid components:

q=4qt4qs
We may assume that
M,
ax
Consequently, (2.2) goes over into
9q 9¢
2.3 S = _m _
(23) dx ° ot

where 0&/0t characterizes the process of colmation in time.
The concentration of suspended particles § can be written as

§ = qs/qb
and this, in turn, implies that (2.3) goes over into
00 3
24 —_— = —Mmy—.
(2.4) 4 o Jry

To solve equation (2.4), it can be presupposed [3] that the clogging pro-
cess can be characterized by
(25) E = ai,
ot v

where v[LT~1] is the average seepage velocity.



MODELLING OF DEPTH FILTRATION 69

On the other hand, the relationship between the colmation porosity and
seepage velocity can be taken as
(2.6) V= L
1-¢
Introducing the experimental parameter N = a/b [T~'] which will
characterize the filtration capacity of the filter and substituting equation
(2.6) into equation (2.5) we obtain
o9&
2.7 —= = Né(1-¢).
(2.7) ot (1-¢)

The initial condition for the colmation porosity is
(2.8) £(0, x) = 0.

The boundary condition for the concentration § is, naturally, given only
at the entrance to the filter

(2.9) a(t, 0) = 8,1),

where §,(f) is the input concentration.

Equations (2.4), (2.7), (2.8), (2.9) form an initial-boundary value prob-
lem. On the basis of the solution of this initial-boundary value problem the
efficiency of the filtering as well as the necessary time period of regeneration
(backwashing) can be determined.

3. Existence and uniqueness of the solution of the initial-boundary
value problem

Existence and uniqueness of the solution of problem (2.4), (2.7)—(2.9)
follows from a fixed point argument. For this purpose we write the problem
in the form of an integral equation.

Integrating (2.7) with respect to f and taking (2.8) into consideration we
get

3.1 1—-&(t,x) = exp[—jN&(r,x) dr]
0

Substituting 8&/at from (2.7) into (2.4) and integrating with respect to x we
obtain

(3.2) 8(t,x) = 8t exp[— :ztl)\lj’i(l — &(t, s)) ds],

where (2.9) has also been used. Introducing the new variable
(3.3) 2(t, x) = 1=&(t, x)
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and substituting (3.2) into (3.1) we get the nonlinear integral equation for 2:

(3.49) 2(t, x) = exp [— f Né,(z) exp [— ';Eiv f Az, s) ds] dr].
0 A7) %

Since the right hand side of (3.4) is continuously differentiable with respect
to t and x, provided that z is continuous, it follows that (3.4) is equvivalent
to (2.4), (2.7)—(2.9) indeed.

Let T be a fixed positive constant and Z = C([O, T]X|O, L], R) be the
Banach space of continuous functions mapping the rectangle [0, T]X[O, L]
into R with the usual maximum norm, i.e. for z¢ Z

ll2ll = max {|(t, x)| |t€ [0, T], x€[0, L]}.
Introducing the operator F: Z—~Z by

F(2)(t, x) = exp [—j Né(r) exp [—-m"(l\; fxz(r,s) ds] dr] ,
0

qir) §
(3.4) can be considered as an abstract operator equation
3.5) 2= F(2), 2€Z,

where F is completely continuous on O =<|j2||<1.
By Schauder’s fixed point theorem [4] (3.5) hasa (not necessarily uni-
que) solution satisfying

(3.6) O<2(t, x)=1, O=t=T, O=x=L.
If 2, and z, satisfy (3.6) it is not hard to establish the inequality
KnLnTn
(3.7 IF"(z2)) — Fre)l = ————llz, — 2l
(nly?

where

2m, 5,

K = max M—, O0=<t=T.
()

Thus, for a sufficiently large n the operator F : Z—~Z is a contraction. Hence,
by Banach’s contraction principle [4] (3.5) has exactly one solution z* and

the sequence of successive approximations z, = 1, 2, = F(2y),. .., 2,4, =
= F(z,), converges uniformly to 2*. For arbitrary n, inequality (3.7) implies
KnLnTn
ll2n — 2¥)| = ————,
(n1y?

which tends to zero as n tends to infinity.
Since T can be chosen arbitrarily, we have arrived at the following

Theorem. The initial-boundary value problem (2.4), (2.7)—(2.9) has a
unique solution £*(t, x), 8*(t, x) for O=<f<ow, O=x=<L.
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It is to be noted that the solution satisfies the inequalitites for O <f< =,
O=x=L

@) 0=gxtx)<1, (i) 0=6%t x)=8,(0)
(iii) 9e*/at=0,  (iv) 98*/0x=0.

In fact (i) is a simple consequence of (3.6) and of (3.3), (ii) follows from (3.2)
and (iii) and (iv) are consequences of the original differential equations.

Inequalities (3.8) are important from the point of view of the valida-
tion of our model. As a matter of fact if they did not hold, our model would
not be realistic. It is to be expected that the value of the colmation function
is between zero and one (i), the concentration is non-negative and not higher
than the input concentration (ii), the colmation of the filter is increasing in
time (iii) and the concentration of the suspension is decreasing as it is advanc-
ing along the length of the filter (iv). Clearly, the validity of our model can
be judged only by comparing the values of our solution &*, §* to the experi-
mental data.

(3.8)

4. The approximation of the solution

Applying exp y= 1 +y, |y| <1 in the linearization of (3.4) we get

x

t ON
(t, x)zl~6/‘N6,(r) exp [— Zl(r) fz(z,s) ds]drx

i 0

t oN X
~l- ofNa,.(z)[l —’Zz(r) Of 2z, 5) ds]dr.

From here it follows that the solution of (3.4) 2* is approximately equal to
the solution of the linear operator equation

4.1) z=a+Az 2¢Z
where a€Z is defined by

at,x) = 1 —N [ 8,z)d
b[ T)ar

and the linear operator A:Z— Z is defined by

A2t x) = (j%ﬁj (7, s)dsdz.

Arguing similarly as in the proof of inequality (3.7), we get

KnLnTn
| Amef) = -
(n1)?

li=ll, z€Z.
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As a concequence, we get that the series
(4.2) =3 Ana
n=0

is convergent and z* is the unique solution of (4.1). By mathematical induc-
tion for n the n-th iterate Ama can be expressed explicitly:

(Amayt, x) = ?nl!?(xl(t, 0))"— f N8, )(xIt, D)) dv

where

l)2

It 7) = f ﬁ’%’%m.

Linearizing (3.2) and substituting 2* in place of 2 we obtain the approximate
solution for the concentration é in the form

5*(t,x) = (t)[ -

moNx

d5(xl(t, 0)) +

moN b3

4.3
#.3) 20 4

f N&(z)D(xI(t, 7)) dr]

where

k
)= —— .,
@ 2o K\(k+ 1)

By the formulae (4.2) and (4.3) the approximate solution of the problem
has been reduced to a process of iterated integration of, in principle, known
functions. Thus, if the average specific discharge or seepage velocity of the
suspension, the input concentration and the constant parameters characte-
rizing the filter and the liquid are known from measurement or simulation,
we can approximately describe the variation of the clogging process and the
concentration in time and along the filter. The implementation of these re-
sults on computer is relatively easy.

An abstract program of the calculations is presented in the following:
PROCEDURE 3(t, x) seq
integral = 0, r = t
CALCULATION OF INTEGRAL iter until =
=0 s=-+
CALCULATION OF I(t. <) iter until s =t
I = I+ (N2my3(s)/qi(s))-ds
s = s+ds
CALCULATION OF I(t, 7) end
u=x-ILd=1 k=n
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CALCULATION OF ®(x -I(t,7)) iter until k = 1
o = cD-tll/k(k+1)+1 o
CALCULATION OF ®(x-I(t, <)) end
integral = integral+ N3j(z)-®.dv
T =1—dr
CALCULATION OF INTEGRAL end
§ = 8(t)-(1+myNx/qy(t) -(— d+ integral))
PROCEDURE (t, x) end

Remark: parameters ds, dr (scales of time) and n (index of partial sum in
series @(u)) are given outside of the procedure, and {, x are input data for the
procedure too.

A simple BASIC version of the above procedure is presented in the following:

10 REM DETERMINATION OF CONCENTRATION AT (T, X)

20 INTEGRAL = §¢

30 FORTA =T TO@GSTEP-DTA

40 1 =0:FORS = TA TO T STEP DS:I = [+ FND(S)/FNQ(S):
NEXT S

50 I =1x%xDSxMxNxN

60 U=X%I:F=1:FORK=NTOISTEP - 1:F=Fx U/K/(K+1)+1:

NEXT K
70 INTEGRAL=INTEGRAL + FND(T)*%NxF
80 NEXT TA

90 INTEGRAL=INTEGRAL%DTA
100 CONCENTRATION=FND(T)(1+ M % Nx X/FNQ(T)
% (—F+INTEGRAL))
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