ON DIFFERENTIABLE ADDITIVE FUNCTIONS

ZOLTÁN DARÓCZY* and IMRE KÁTAI**

* Dept. of Math., Kossuth Lajos Univ., 4010 Debrecen, Pf. 12.

** Dept. of General Comp. Sci., Eötvös Loránd Univ.,

1088 Budapest, Múzeum krt. 6-8.

(Received July 26, 1985)

1. Let Λ denote the set of all those real sequences $\{\lambda_n\}$ for which $\lambda_n > \lambda_{n+1} > 0$ $(n \in \mathbb{N})$ and $L := \sum_{n=1}^{\infty} \lambda_n < \infty$.

Definition 1.1. A sequence $\{\lambda_n\} \in \Lambda$ is said to be interval filling, if for any number $x \in [0, L]$ there exists a sequence $\varepsilon_n \in \{0, 1\}$ $(n \in \mathbb{N})$, such that

$$(1.1) x = \sum_{n=1}^{\infty} \varepsilon_n \lambda_{n^{\bullet}} \quad \Box$$

As is known ([1]), we have the following

Theorem 1.2. A sequence $\{\lambda_n\}\in A$ is interval filling if and only if for any $n\in \mathbb{N}$

$$\lambda_n \leq \sum_{i=n+1}^{\infty} \lambda_i$$

holds.

Let $\{\lambda_n\}\in \Lambda$ be an interval filling sequence and $x\in [0, L]$. Moreover, let us define by induction on n

(1.3)
$$\varepsilon_n(x) := \begin{cases} 1 & \text{if } \sum_{i=1}^{n-1} \varepsilon_i(x) \lambda_i + \lambda_n \leq x \\ 0 & \text{if } \sum_{i=1}^{n-1} \varepsilon_i(x) \lambda_i + \lambda_n > x. \end{cases}$$

Then ([1], [2])

(1.4)
$$x = \sum_{n=1}^{\infty} \varepsilon_n(x) \lambda_n$$

and the representation (1.4) will be called the regular expansion of x with respect to the sequence $\{\lambda_n\}$.

Definition 1.3. Let $\{\lambda_n\} \in \Lambda$ be an interval filling sequence. We call a bounded function $F:[0, L] \rightarrow \mathbb{R}$ additive, if for any $x \in [0, L]$ the equality

(1.5)
$$F(x) = \sum_{n=1}^{\infty} \varepsilon_n(x) F(\lambda_n)$$

holds, where $\varepsilon_n(x)$ equals 0 or 1 according to the algorithm (1.3). \Box It is known that if we put

$$a_n$$
: = $F(\lambda_n)$ $(n \in N)$, then $\sum_{n=1}^{\infty} |a_n| < \infty$,

and conversely any sequence $a_n \in \mathbb{R}$ satisfying $\sum_{n=1}^{\infty} |a_n| < \infty$ determines an additive function.

In this paper we investigate the following question: What can be said about the structure of a differentiable additive function defined on the interval [0, L]?

2. Let $\{\lambda_n\} \in \Lambda$ be a fixed interval filling sequence.

Definition 2.1. We call a number $x \in [0, L]$ terminating, if there exists a number N, such that $\varepsilon_n(x) = 0$ for n > N. If x is terminating and $\varepsilon_m(x) = 1$, moreover $\varepsilon_n(x) = 0$ for n > m then we say that x has length m, written h(x) = m.

Lemma 2.1. Let $\{\lambda_n\} \in \Lambda$ be an interval filling sequence and $F:[0, L] \to \mathbb{R}$ an additive function (with respect to $\{\lambda_n\}$), differentiable at the terminating point $x \in [0, L]$. If $a_n := F(\lambda_n)$ $(n \in \mathbb{N})$ then

(2.1)
$$\lim_{n\to\infty}\frac{a_n}{\lambda_n}=F'(x).$$

Proof. Let h(x) = m, i. e.

$$x=\sum_{i=1}^m \varepsilon_i(x)\lambda_i.$$

Then there exists an N > m, such that for n > N the relation

$$\varepsilon_k(x+\lambda_n) = \begin{cases} \varepsilon_k(x) & \text{for } k=1,2,...,m \\ 1 & \text{for } k=n \\ 0 & \text{for } k \in \mathbb{N} \setminus \{1,2,...,m\} \cup \{n\}. \end{cases}$$

Thus

$$\frac{a_n}{\lambda_n} = \frac{F(x+\lambda_n) - F(x)}{\lambda_n} \quad (n > N)$$

and, by differentiability at x, this implies (2.1). \Box

3. Let us now ask the following more difficult question. What will the consequences be in case the additive function F is differentiable at a non-terminating point x? For arbitrary interval filling sequences this question still remains open, nevertheless we are able to give an answer for quite a large class of sequences.

Definition 3.1. We call the interval filling sequence $\{\lambda_n\}\in\Lambda$ smooth, if there exists a constant K>1, such that

$$(3.1) \sum_{i=n+1}^{\infty} \lambda_i < K\lambda_n$$

for any $n \in \mathbb{N}$.

The inequality (3.1) expressing smoothness can be regarded as being complementary to the inequality (1.2).

Theorem 3.2. Let $\{\lambda_n\} \in \Lambda$ be a smooth interval filling sequence and $F: [0, L] \to \mathbb{R}$ an additive function (with respect to $\{\lambda_n\}$). If F is differentiable at the nonterminating point $x \in [0, L]$, then with the notation $a_n := F(\lambda_n)$ $(n \in \mathbb{N})$ we have

(3.2)
$$\lim_{\substack{N \to \infty \\ N \in \mathbb{N}_1}} \frac{a_N}{\lambda_N} = F'(x),$$

where $\mathbf{N}_1 := \{n \mid n \in \mathbb{N}, \ \varepsilon_n(x) = 1\}.$

Proof. Let

$$x=\sum_{n=1}^{\infty}\varepsilon_n(x)\lambda_n,$$

where $N_1 := \{n \mid n \in \mathbb{N}, \varepsilon_n(x) = 1\}$ is an infinite index set. Let moreover $S_N(x) := \sum_{n=1}^N \varepsilon_n(x) \lambda_n$, where the right-hand side is the regular expansion of $S_N(x)$.

Since F is differentiable at x, there exists a function E_x :]0, $L[\rightarrow \mathbb{R}$, such that

$$\lim_{y\to x} E_x(y) = 0$$

and

(3.3)
$$F(x) - F(y) = F'(x)(x - y) + E_x(y)(x - y)$$

is satisfied for every $y \in]0, L[$.

If $N \in \mathbb{N}_1$ (i.e. $\varepsilon_N(x) = 1$), then (3.3) implies

$$F(x) - F(s_N(x)) = F'(x)(x - s_N(x)) + E_x(s_N(x))(x - s_N(x))$$

and

$$F(x) - F(s_{N-1}(x)) = F'(x)(x - s_{N-1}(x)) + E_x(s_{N-1}(x))(x - s_{N-1}(x)).$$

5 ANNALES - Sectio Computatorica - Tomus VII.

Hence

$$a_{N} = F(s_{N}(x)) - F(s_{N-1}(x)) = F'(x)\lambda_{N} + E_{x}(s_{N-1}(x)) \left[\lambda_{N} + \sum_{i=N+1}^{\infty} \varepsilon_{i}(x)\lambda_{i}\right] - E_{x}(s_{N}(x)) \left[\sum_{i=N+1}^{\infty} \varepsilon_{i}(x)\lambda_{i}\right].$$

From the previous equality we get for $N \in \mathbb{N}_1$ that

$$\frac{a_N}{\lambda_N} = F'(x) + E_x(s_{N-1}(x)) \left[1 + \eta_N(x) \right] - E_x(s_N(x)) \eta_N(x),$$

where

$$0 < \eta_N(x) := \frac{\sum_{i=N+1}^{\infty} \varepsilon_i(x) \lambda_i}{\lambda_N} \leq \frac{\sum_{i=N+1}^{\infty} \lambda_i}{\lambda_N} < K.$$

Thus for $N \to \infty$ ($N \in \mathbb{N}_1$) we obtain (3.2).

4. On the basis of the foregoing we are able now to formulate the following

Theorem 4.1. Let $\{\lambda_n\} \in \Lambda$ be a smooth interval filling sequence. Let moreover F: $[0, L] \rightarrow \mathbb{R}$ be an additive function (with respect to $\{\lambda_n\}$), differentiable at every point. Then there exists a $c \in \mathbb{R}$ such that F(x) = cx for every $x \in [0, L]$.

Proof. By Lemma 2.1. there exists $c := \lim_{n \to \infty} \frac{a_n}{\lambda_n}$ with $a_n := F(\lambda_n)$. On the basis of Lemma 2.1. and Theorem 3.2. F'(x) = c for any $x \in [0, L]$. Hence F(x) = cx.

It is known that for 1 < q < 2 the sequence

$$\lambda_n := \frac{1}{q^n} \ (n \in \mathbb{N})$$
 is interval filling $\left(L = \frac{1}{q-1}\right)$.

On the other hand, in view of

$$\sum_{i=n+1}^{\infty} \frac{1}{q^i} = \frac{L}{q^n},$$

this sequence is smooth, hence Theorem 4.1. can be applied.

REFERENCES

- [1] Daróczy Z., Járai A. and Kátai I.: Intervallfüllende Folgen und volladditive Funk-
- tionen. Acta Sci. Math. (Szeged) 50 (1986), 337 350.
 [2] Daróczy Z., Járai A. and Kátai I.: Interval filling sequences. Annales Univ. Sci. Budapest, Sectio Computatorica 6 (1985), 53-63.