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1. Let 4 denote the set of all those real sequences {A,} for which A,>
>2A1>0 (n€N) and L: = > A, <eo.
n=1

Definition 71.7. A sequence {A,}€4 is said to be inferval filling, if for
any number x€[0, L] there exists a sequence ¢,€{0, 1} (n€N), such that

oo

(1.1) x= > ey O

n=1
As is known ([1]), we have the following

Theorem 1.2. A sequence {1,)€A is interval filling if and only if for any
neN

(1.2) Ay

A

2 M
i=n+1
holds.

Let {1,}€4 be an interval filling sequence and x€[0, L]. Moreover, let
us define by induction on n

—1
Lif 'S (008 +A=X
(1.3) e,(X): = ::

O if Z ei(X)).,+3.n>x.
i=1

Then ([1], [2])

(1.4) x= 2 e(X)hy

n-1

and the representation (1.4) will be called the regular expansion of x with
respect to the sequence {4,}.
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Definition 1.3. Let {A,}€4 be an interval filling sequence. We call a
bounded function F:[0, L]-R additive, if for any x¢€ [0, L] the equality

oo

(1.5) FO) = S e,()F(,)

n=1

holds, where ¢,(x) equals O or 1 according to the algorithm (1.3). O
It is known that if we put

a,: = F(h)) (n€N), then 3 |a,| <<,
n=1

and conversely any sequence a,€R satisfying 2 |a,| < e determines an
n=1
additive function.
In this paper we investigate the following question: What can be said
about the structure of a differentiable additive function defined on the
interval [0, L]?

2. Let {A,}€ 4 be a fixed interval filling sequence.

Definition 2.7. We call a number x€[0, L] terminating, if there exists
anumber N, such that e,(x) = O for n>N. If x is terminating and ¢,(x) = 1,
moreover ¢,(x) = 0 for n>m then we say that x has length m, written
h(x) = m. O

Lemma 2.1. Let {A,}€A be an interval filling sequence and F:[0, L]-R
an additive function (with respect to {A.}), differentiable at the terminating
pointx€[0, L). If a, := F(A,) (n€N) then

(2.1) lim 22 = F/(x).

Proof. Let h(x) = m, i.e.
m
x = D gX)A;
i=1
Then there exists an N>m, such that for n>N the relation
lsk(X) fOI' k = 1, 2, ...,m
e(x+24)=!1 fork=n
lO for keN\{1,2,...,m}U{n}.
Thus
_ F(x+2,)—F(x) (n>N)
A
and, by differentiability at x, this implies (2.1). O

an
An
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3. Let us now ask the following more difficult question. What will the
consequences be in case the additive function F is differentiable at a non-
terminating point x? For arbitrary interval filling sequences this question
still remains open, nevertheless we are able to give an answer for quite a lar-
ge class of sequences.

Definition 3.1. We call the interval filling sequence {A,}€A smooth, if
there exists a constant K=>1, such that

@3.1) > A<Ka,
i=n+1
for any neN. a
The inequality (3.1) expressing smoothness can be regarded as being
complementary to the inequality (1.2).

Theorem 3.2. Let {A,}cA be a smooth interval filling sequence and
F: [0, L]1-R an additive function (with respectto{4,}). If F is differentiable at
the nonterminating point x€[0, L], then with the notation a,:= F(,) (n€N)
we have

(3.2) lim 2N = F/(x),
N=+o )'N
NEN;
where N, := {n|n€N, ¢,(x) = 1}.
Proof. Let

x= > eq(X)A,

n=1
where N; : = {n|n€N, e,(x) = 1}isan infinite index set. Let moreover Sy(x): =
N
= D e4(X)A,, Where the right-hand side is the regular expansion of Sy(x).

=1
Singe F is differentiable at x, there exists a function E,:]0, L[ ~R, such that

limE(y) =0
and
(3.3) F(x)-F(y) = F'(x)(x—y)+ E()(x~y)

is satisfied for every y€]0, L[.
If NeN, (i.e. ex(x) = 1), then (3.3) implies

F(x)— F(sn(x)) = F’/(x)(x — sn(x)) + E (sn(x))(x — 55(x))
and

F(x)— F(sn-1(x)) = F'(x)(x —8n-1(X)) + E(s5-1(x))(x — sy—1(x))-
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Hence

ay = F(sn(x)) = F(sy-1(x)) = F'(x)Ay + E(sy-1(%)) [}'N +

+ 2 e,(x)l,]—Ex(sN(x))[ii e,-(x)A,],

i=N+1 =N+1
From the previous equality we get for NéN, that

B = 09+ o) | 1+~ Exlon@)no)
'N

where

‘ > &0 ’ 2 A
0<77N(x): — i=N+1 = i=N+1 <K-
An AN

Thus for N -~ (N€N;) we obtain (3.2). O

4. On the basis of the foregoing we are able now to formulate the follo-
wing

Theorem 4.1. Let {A,}€ .4 be a smooth interval filling sequence. Let moreover

F: [0, L]-R be an additive function (with respect to {A,}), differentiable at
every point. Then there exists a ¢ €R such that F(x) = cx for every x€[0, L].

Proof. By Lemma 2.1. there exists ¢: = lim In with a,:= F(4,). On

N—oco
the basis of Lemma 2.1. and Theorem 3.2. F’(x) = ¢ for any x€[0, L].
Hence F(x) = cx. O

It is known that for 1 <q<2 the sequence

Ayt = 1 (n€N)is interval filling [L = —1—]
q qg—1
On the other hand, in view of

| L
DI

i=n+1 ( q

this sequence is smooth, hence Theorem 4.1. can be applied.

REFERENCES

[1] Daréczy Z., jdrai A. and Kadtai 1.: Intervallfiillende Folgen und volladditive Funk-
tionen. Acta Sci. Math. (Szeged) 50 (1986), 337 — 350.

[2] Dardczy Z., Jdrai A. and Kadtai I.: Interval filling sequences. Annales Univ. Sci.
Budapest, Sectio Computatorica 6 (1985), 53 —63.



