SPLINE APPROXIMATIONS FOR A SYSTEM OF
ORDINARY DIFFERENTIAL EQUATIONS. II

TH. FAWZY* and Z. RAMADAN**

* Dept. of Math., Fac. of Science, Suez Canal Univ., Ismailia, Egypt
** Dept. of Math., Fac. of Education, Ain Shams Univ., Cairo, Egypt

( Received May 23, 1985)

Abstract. In this paper we present a method for approximating the solu-
tion of the system of nonlinear ordinary differential equations y" = f,(x, y, 2),
2 = fy(x, y, 2) with y(x,) = ¥y, and 2(x,) = 2z, adopting spline functions which
are not necessarily polynomial splines. It is a one-step method O(h2+9) in
Y(x), ¥'(x), ¥y (x), 2(x), Z(x) and z”(x) where O<a=1, assuming that f,,
f.€C'[a, b).

Description of the method

Consider the system of ordinary differential equations

M Y =L ,2), Y(X) = Yo
) Z =[x 9, 2), %) =2,
where f,, f,€ C1([0,1]xX R?).

Let 4 be the partition

A:0 = Xg<Xy< ... <Xy<Xpp1<...<X, = I,
where Xgs1— X, =handk =0,1. ..., n-1.

Let L, and L, be the Lipschitz constants satisfied by the functions f;, f1
and f;, f, respectively, i.e.,

(3) lf(lj)(x’yhzl)—flj)(x’}’z’zz)] 5L1{|y1—y2| + lzl-zzl}’ ] = 0’1
and
4 |f;j)(x»}’1:Zl)"f;j)(x’yzrzz)i =L{|n1— .| + |Zl—22|}, j=0,1

for all (x, ¥,, 2,) and (x, ¥,, 2,) in the domain of definition of f,, f1, f, and f;.
Then we define the spline functions approximating y(x) and 2(x) by

S4(x) and S4(x) by:
(5) SAx) = Sx), X, =x=X,41,k=0,1,...,n—1
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and
(6) SAX) = Sy(x), Xy =x=X41, k=0,1,...,n—1,

Both S.(x) and S4(x) are given by

(M Si(3) = Sy (x)+ ffl[t’ yE(@), zx®O]dt, k= 0,1, ...,n—1,
xg

where

YEW) = Sp—1(X) +FifXir Sima(tids Sk (- x,) +
(8) + —;‘f U Sie1(Xa)y Sea(X)}E— X,)2,

24() = Spma(x) + ol X Sima(X)s Sp—a ()Nt — %) +
9) + —;'f a{Xpr Sk—1(Xi)s Sk—1(Xi = X%)%, Xy st=X=X;4,
(10) S_i(%0) = Yor §-1(xo) =12,
and
(1) Su0 = S+ [ 1t y20), 201t

Xy

It is clear by the construction, that S, (x) and S 4(x)€ C[0, 1].

It should be noted that we use the Lipschitz conditions onf; and f, to
guarantee the existence of a unique solution to the problem (1)—(2).

We now discuss the convergence of these approximants.

For all x€[x,, x;4,], k = 0,1. .... n—1 the exact solutions of (1) and
(2) can be written — by using Taylor’s expansion — in the forms:

(12 ¥ = net [ L0, 7014,
xk
where
(13) D) = y,,+y;(t—xk>+%y"(sk)(t—xk)*,
(14) 2(0) = z,+ 2t~ %)+ %z"(nk)(t—xm,

Exr My € (Xps Xpe41)
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and
(15) 2 =2+ [ 1l i) 201 .

We now estimate |y(x)—sy(x)| where x€[x,, x,].
Using (7—10), (12— 14) and the Lipschitz condition (3), we get

x

| () — so(x)| = f | f1[t, yo(8), 26(t)] = folt, y&(2), 28(t)]| dt =

Xo

(16) <Ly [ A1y~ y0] + 2 ~2500)]} .

Now let
U = |y(t)—y3()| and v = [zo(t)—2¥({)]-

Then

() U =1y (€)= 3’| t-x[?
and

(18) V= —;«IZ”(no)¥z6’| |t —xo|.

Thus using (16), (17) and (18) we get:
(19)  |y(x)—so(x)| s%Ll{w(y", h)+ (2", h)}S%Llh%(h) = O(h3+9),

where w(y”, h) and w(z”, h) are themoduli of continuity of the functions
y” and 2" respectively, and

(20) w(h) = max {o(y”, h), w2”, h)}.
We now estimate [y’(x)—2'(x)|.
Using (7— 10), (12— 14) and the Lipschitz condition (3) we get

00— S =Ly (€0 =5 | + 12/ () =2 5=l =

@1) = %Ll{w(y”, By +olz”’, hjhE=

=L ?o(h) = O(h2+9).
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We also estimate |y”(x)—sg’(x)|. Thus using (7—10), (12—14) and the
Lipschitz condition (3) we get

[y’ (%) — 85" (0)] S%Ll{l}'"(éo)—%’l + 127 (no) — 25" | }x —xo|*=
=L i(h) = O(h2+e).

By the same way, using (8—11), (13— 15) and employing the Lipschitz
condition (4), it can be shown that

22)

(23) |2(0) — 5o(x)| s.;_L,naw(h) = O(3+9),
(24) |2(x)g —3o(%) | = Lah%a(h) = O(h2+*),
and

(25) |27/(x) 55/ (%)| = Lyfao() = O(2+<),

Now, we are going to consider the general subinterval [x,, x,,,], k = 1,
2,...,n—1,

Using (7—9), (12— 14) and the Lipschitz condition (3), we get
(26) |¥(x) —$x(x)| = ¥ — Se-a(X)| + Ly f {170 — y¥®| + |2,(8) — 2K (®)|} at.
Xr

Now let
Uy = |y - y¥®).
Then
Uy =¥ — Se—a(X)| + | ¥k = FufXe Sx—1(a), Se—a(i}] |82, f +

@) 41 (80 = T a8, S - 51
Using the fact that s.(x)€ C[0, 1], s4(x)€ C[0, 1] and the notations

e(x) = |Y(x)—sy(x)],

%) = |¥i—si(xi)l

&x) = |2(x)—5,x)|,

e(x) = |z —5(x)|,
and if we let
T = |y —JulXe Sk-a(X)s S},

T = Li{|yx — Sk (x)| + |2, — Sp=a(x3) |},

then



SPLINE APPROXIMATIONS 57

i. e.
(29) T <Ly(e,+¢),
and if we let
Ty = |y" (&) — f1{Xp Se-1(%), S—a (X},

then

Ty=|y"(E) =Y | + [ /10 Yio 2) = FifXp Sk-1(Xi)s Se— 1 (X} »
i. e.
(30) Ty=o(y"’, h)+ Ly(e, +€).

Now, using (28 —30) in the inequality (27), we get
_ 1 ,r ~
(1)  Up=e+Ly(e+e)|t—x| +?{w(y y h)+ Ly(e, + €0} |t — %, |2

Similarly, let
Vi = lz(f) =z B
Then, using (28) and the Lipschitz condition (4), we get

(32)  Vyi=g+Ly(exte)|t—x| + %{w(z”, h)+ Ly(e, + )} |t — X, |%.
Using (26), (28), (31) and (32) we can easily get

(33) ()= (1 + co)+ oty +-5 Ll

wherec, = L, + —z—Lf + %Lle is a constant independent of s and h<1.

Similarly using (13—15), (8, 9, 11) and the Lipschitz conditions (3 —4)
we can easily see that

(34) B() =81 + 1)+ G+ Lol

where ¢, = L, + %Lg %LIL2 is a constant independent of 1 and h< 1.

If we use the matrix notations
E(x) = () €()",
Ek=(€kék)T, k=0,l,--.,n_1,
then the estimations (33) and (34) can be written in the form

E(x)s[1+‘°h cot ]Ek+ih3w(h)[’“l],
gh  1+4ch 3 L,
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i.e.
(35) E(x)=(I+hA)E, + %hsw(h) B,

where
(e o
0 G L,
and [ is the identity matrix of order 2.

At this point, we use the following definition of the matrix norm. Let
7 = [t;,] be an m X n matrix, then we define

n
|zl = max Z |tu| .
1 j=1
Using this definition, we get
(36) |E,l| = max(e,¢€), k=0,1,...,n—1.

Now, since (35) is valid for all x€[x,, x,4,], kK =0, 1, ..., n—1, the fol-
lowing inequalities hold:

IECO) = (1+ Rl AIDIE +%h3w(h) 1Bl
(1+ A ADIE = (1 + RIL AP E-all + %h“w(h)(l +h|| A BI,

(1 + A ADE, -]l = (1 + | AIPEx—all + %haw(h)(1 +hI A B,

(1+ R AIYUE |l = (L + ALY Eofl + %hs'w(h)(l +hl|Al)¥| B.

Adding L.H.S. and R.H.S. in these inequalities and noting that ¢, = 0 we get

(37) E(x) =c,h*w(h),

where ¢, = ial) “j;“ is a constant independent of h and h< 1.
By the defini’t”iorlI (36), it follows that

(38) e(x) = cyh%w(h) = O(h%+°)

and

(39) e(x) = c,li%w(h) = O(h2+9),

We now estimate |y’(x)—si(x)|. For this purpose we use equations
(7—-9), (12— 14) and the Lipschitz conditions (3 —4) and get

(40) e'(x) = [y'(0) —sy(x)| =calew+ &) + Loheo(h),
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where ¢; = iLi + 3 L,L,+L, is a constant independent of hand h<7.
2 2

Using (38) and (39) inequality (40) becomes
41) e (x)=chw(h) = O(h%+),
where ¢, = 2c,¢,+ L, is a constant independent of n and h<1.

In a similar manner we estimate [2’(x)—5(x)].

From equations (8—11), (13—15) and using the Lipschitz conditions
(3—4) it follows that

(42) €'(x) = |2'(x) - 5i(x)| = cs(ex+ex) + LohPoo(h),
where ¢; = %Lg +% L,L,+L, isaconstantindependent of hand h<1.

Substituting inequalities (38) and (39) into inequality (42) we get:
43) §'(x) = cgh*w(h) = O(h*+°),

where ¢ = 2¢,¢5+ L, is a constant independent of /1 and h<1.

We are going to estimate |y”(x)—s;’(x)| and |2”(x)—§,”’(x)|, where we
are using the following definitions for s;’(x) and §,”"(x):

(44) 8k (%) = fi{x, s(%), 5(x)}
and
(45) 8¢/ (%) = fa{x, 5(x), Su(0)}-

Now, using (1) and (44) we get

¢’(x) = |y () - sk ()| = | fi(x,y,2) - f1{x, si(x); S(x)}-
Using (38) and (39) we get
(46) e”(x)=c,h*w(h) = O(h?+°),

where ¢, = 2L,c, is a constant independent of h and h<1.
Similarly, it can be shown that
47) e’ (x) = |2°(x) -5, (x)| = csh?w(h) = O(h2+9),

where ¢g = 2L,¢, is a constant independent of hand h<1.
Thus, we have proved the following

Theorem. Let s(x) and S,(x) be the approximate solutions to problem
(1)~ (2) given by equations (5—11), and let f;, f€c}([xo, X, ] X R?).
Then, for all x€[x,, x,]} we have

17(0) — 54| s%zqh%(h),



60 TH. FAWZY — Z. RAMADAN

[y(x) — 8§x)| = L h2as(h), j = 1,2,
|2(x) — %) | = —;-Lzhzw(h)

and
|20(x) —30x)| = Lyhtelh), j = 1,2,
and for all x€[x,, X,4+1]), kK = 1(1)n—1 we have
|yP(x) — 5i(x)| = cohex(h)
and
|20(x) — SP(x) | = eyoh?eo(h),

where j = 0, 1 and 2, ¢y, = max (¢,, ¢4, ¢;) and ¢, = max (¢, Cq, Cg).

Numerical example

Consider the following system of differential equations
Yy =y+z2—-x—x2-e¥,
2 =20+22-2ex-2x2-2,y(0) = 1, 200) = 2.

The method is tested using this example, in the interval [0, 1] with step
size h = 0.1.
The analytical solution is

P(x) = &+x
and
2(x) = e+ x241.

The tabuleted results, appearing in the following table, are evaluated at
the point x = 0.25.

exact value

approximate value

absolute error

y 1.5340254 1.533906117 0.000119283
y 2.284025329 2.283397416 0.000627913
¥y’ 1.284025155 1.282951722 0.001073433
F 2.7112212 2.710982672 0.000238528
4 3.797442367 3.796186541 0.001255826

” 8.594884559 8.59273769 0.002146869
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