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This paper represents a continuation of the works [6—9]. Here we have
tried to present a unitary theory for certain classes of iteration methods,
used for solving nonlinear operator equations, which were defined in the
conditions of Banach spaces and linear semiordered spaces, respectively.

We have shown in the above mentioned papers that the concept of con-
vergence’s order implies a direct influence on the structure of iteration me-
thods. In this way this concept permits to generate step by step and to clas-
sify as well the obtained iteration methods and enables in these circumstan-
ces the common treatment of these methods.

At the same time common conditions for convergence are given.

Based on a certain principle of construction in the condition of deriva-
bility our purpose is to generate systematically some new large classes of ite-
ration methods. Obviously, the common treatment of all iteration methods
of higher order represents a necessity in the development of this domain, so
it’s a fundamental question.

Of course, those iteration processes, algorithms are most important,
which can be adapted and applied effectively at digital computers.

In the present work we resume the above problems and we shall generate
also — from a common source — some interesting new classes of iteration
methods, constructed partly by J. F. Traub and by P. Jarratt, in the case
of real equations [22, 10].

1. Let us now consider the equation

(1) P(x) =0

where P is a nonlinear operator defined in a given domain D of a Banach
space X, having — for simplicity — his values also in X, without restricting
essentially the conditions.

Next we shall study only the case of simple solutions for the equation
(1), i.e. the existence and boundedness in norm of [P’(x*)]~* shall be assumed,
x* being the solution of (1).
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In this part of the present work we shall not deal with the optimality
of the generated methods [23].

Our basic problem is to substitute in a suitable manner the given opera-
tor equation P(x) = 0, by another equivalent operator equation x—y(x) =
= @, in such a way that the order of convergence should k=2 be, for the
iteration method

(2) Xn+1 = w(xn)‘
For this purpose we use the following concept of convergence’s order.

Definition. Let x* be a solution of the operator equation (1). We say
that the above considered iteration method (2) posesses the order of conver-
gence k, iff

(i) the norm |x—x,| tends to zero for n— - ;

(ii) the Fréchet derivatives of the iteration operator y(x) exist and satisfy
the equalities

B)  Y(x*) =0y, y(x*) = Oy, - .., pH7(X¥) = Opyy pU(x*) # Ok,

where 0, (i = 1, 2, ..., k) are i-linear null-operators.
In our works [6—9] we have considered at the first step the following
iteration operator

4) p(x): = x—{P'(x) + 1 (X)P(x)} TP (x) + () [P(X) ]%,

where y(x) represents a nonlinear operator with domain DC X and range, in
X. Moreover u,(x) and A,(x) are bilinear operators for fixed x, being defined
in the domain DX DC XX X and having his values also in X.

Using the above iteration operator y(x), we have contructed correspon-
ding iteration method (2), and we have applied it for solving equation (1).
In this way we have generated two essential classes of iteration methods of
second and third order, respectively.

So we have obtained the well-known Newton-Kantorovich’s method, the
Chebyshev’s method and the method of tangent hyperbolas as particular
cases. Moreover, we have shown that besides there exists a class of transfinit
number of methods of second and third order, respectively [7].

In the case in which the iteration operator is chosen in another form, i.e.

“) P(x): = x—[P'(x) + p(X)PX) [ H(P(x) + 2,() [P ),

we recover the L. K. Vohandu’s method and the method of U. Kaasik,
which are included as particular cases in the above mentioned methods [12,
21,9, 24].

Some general iteration operators were constructed by us in the following
forms

(5) p(x): = x—[P’(x) + R(x)]*P(x) + Q(x)
and

(5%) p(x): = x—[P'(x)+ R(x)]"X(P(x) + Q(x))
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respectively, where
R(): = p ()P + . . . + sy ([P
and
Q(x): = )PP+ - - - + 2,1, (PX) VY, (i+] = k—1).

Let us mention here that the operators Q(x) and R(x) possess so certain
“multilinear” or ‘“polynomial” character, being constructed by the above
multilinear operators A and u. On the other hand we notice that the iteration
method x,,, , =y(x,) constructed by (5) contains among others the Chebyshev-
type methods indicated by a formal development of the inverse of the non-
linear operator P(x) [17, p. 72].

Now we are going to give some more general iteration operators and we
shall generate certain interesting iteration methods, without to limit, of cour-
se, the above mentioned multilinear character.

Let us consider the following large class of iteration operators
©) $(x): = x— (U@ + SaU(x+R(0)+ ()
H{BP()+ 3 bP(x+ Q) +4(9)
where

R(@): = Zu’ @IPEI; r(): = Zn@PEIS
Qi(x): = JZ/L“’ PE)Y; ¢(0): = Zu()IPOT*
Then «, 8, a;, b; denote real numbers and u{(x), »,(x), 4§(x), y,(x) are also

multilinear operators for fixed x. In the next we shall give the operator U(x)
certain concrete expressions.

Let us now consider the construction of a few interesting methods:

A) As a first particular case we shall consider the above iteration ope-
rator in the following particular form

p(x): = x— P(x + A,(x)P(x)),
where 1,(x) is a linear operator for fixed x. Imposing the condition
Y (x*): = I = P(x*)[] +24,(x*)P'(x*)] = 0y,
we obtain
M(x*): = (D(x*) — I)I(x*)
where
I(x): = [P'(x)]
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We can see that, for the moment, the operator 1,(x) is determined only
for x = x*. For any x€D it may be chosen in the following form

4, (x): = {I(x) - }(x),
and more generally
W(x): = {L(x) = BT + v X)[POT
Of course, instead of the variable x we can replace also an expression of

P(x), so
Ze@PW],

where p,(x) are multilinear operators in the above sense. By this composition
we have constructed a certain large set of iteration methods of second order.
We mention for the next, if we choose the iteration operator y(x) as

follows
p(x): = x— U(X)P(x + 2,(x)P(x))

and impose y’(x*) = 0, v”(x*) = O,, then for the determination of U(x)
and A,(x) we shall obtain certain system of differential-operator equations.
B) In the next step we consider

p(x): = x— UX)P(x + A(x)[P(x)]?).
In this case the condition y’(x*) = O, leads to the relation
' (x*): = I - U(x*)P’(x*) = Oy,

which implies U(x*):= I'(x*). This means that the operator U(x) may be
chosen more generally in the form

U(x): = I(x+ JZ # NPT+ Z () [POT
In order to choose A,(x) we use the condition p”'(x*) = 0,, i.e. p”'(x*)(4x)*=0
for any Ax€ D, where O is the null-element of X; so we have
(7) " (x*)(dx)%: = =2U’(x*)P’(x*)(4x)? — U(x*)P” (x*))(4x)? —

= U(*)P (x*){22,(x*)[P'(x*)(dx) ]* = 0,(4x)?.

Based on the above expression of U(x) and on his Fréchet’s derivative of the
form
U'(x*)4x: = — I'(x*)P”(x*)(4x)I(x*)(4x)

we get from (7) the relation
I(x*)P” (x*)(A4x)? — 24,(x*) [P’ (x)4x]* = O.
Thus we have
A (x*)(4x)* = %1‘(36"‘)1”’(36*)[1’(3<*)Ax]2
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and for any x we can choose
A (x)(4x)* = %I’OC)P”(X)[1“(36)413612 + Zex)P )]

For the generality we can also pose here a multilinear form of P(x) instead of
the variable x.
C) Let us mention here that in the particular case when we have

p(x): = x— U(x+ p(x))P(x)
and U = P’ then we obtain for y’(x*) = 0, and for y”(x*) = 0,

U(x*): = T(x*), p(x*): = %F(x*)P(x*).

This iteration method x,,, = y(x,) of third order constructed in this way
needs two inverses but only the Fréchet’s derivative of first order, (sometimes
the Fréchet’s derivative of second order can be very complicated). This par-
ticular method was treated in [13] and in [8 p. 171].

D) At last let us show that the generalized Traub’s method

xn+1 = xn_—P(xn){P(xn) + P(xn_ P(xn)P(xn))}

treated in [15, p. 187] belongs also to our class of iteration methods given by
(6). For this purpose we consider « =1, ¢, =0, r(x) =0, 8 =1, b = 1,
b, =0, (i =2, ...), q(x) = 6. For simplicity we can put Q,(x)= U(x)P(x).
Thus we can use the following special iteration operator

p(x): = x+ U(x){P(x) + P[x + U(x)P(x)]}.

For y’'(x*) 4x = @ we get U(x*) = —I'(x*) and if we choose U(x):= —I'(x)
for any x€ D, then the condition y”(x*)(4x)? = @ is satisfied as well.

Refering to the construction of classes of iteration methods we observe
that in the definition of the convergence’s order instead of (3) we could have
posed the consitions

(3') w(’)(xn)zo,,, (r=1,2, o k=1),
"P(k)(xn) # 0k7

Of course. these definitions are equivalent [5]. However, using this second de-
finition for the construction of methods we shall obtain certain systems of
differential equations [6].

2. In this second section of our work we are going to establish common
conditions of convergence of order k for the general iteration method x,,,, =
= y(x,), where p(x) is defined by (6).

For this purpose we consider again the nonlinear operator equation
P(x) = 0, where xe DC X and P(x)€ X.

We assume the following conditions:

1°. P(x) = O is equivalent to the equation x = y(x);
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2°. there exists an initial approximate solution x,€S, where S:||x —x,|| =
=r, and for the first derivative of the iteration operator y(x) we have

(8) ly'@ll=p<1, VxeS,
where
r: =plx; —x,|| and p= 1%,
which ensure the following properties:
p(x)€S if x€8S;
3°. for the Fréchet’s derivatives of y(x) we impose the conditions (3);

4. [l 1(Ey) — p*DUE)N = M 1&gy — &ll-
for any &, £,€S, where M, is a fixed real constant and O <M, < +
5°, rk=iM, <k!.

Theorem. Let us assume that the conditions 1°—35°. are fulfilled. Then
the operator equation P(x) = O possesses a single solution x*€S and the ge-
neral iteration method x, ., = y(x,) is convergent of order k, having the fol-

lowing estimation
k-1
M, k=1
* __ - K| Tk .
©) Ix* — x| = [ < ]

Proof. Based on a Kantorowich’s theorem [11, p. 536] we observe that
the conditions 1°—2°. ensure the existence and the uniqueness for the solu-
tion of the equation P(x)= @, moreover the iterations x,, €S for any natural n.

Further, for the convergence of order k we can consider the generalized
Taylor’s formula for y(x) in the following form

lp(Xn—1) — p(x*) = 9" (X*) (Xpy = X*) — . - . =
1
C(k=1)!
This implies the delimitation

w(k-D(x*)(x,._l—x*)’f-ln%Mknxm—x*nk.

M
e — | = =l -y — x*¥
k!
or
K1
M, Y1
e
k!
which still leads to the estimation (9). O
Observation. It’s worth mentioning here that — having in view the con-
tinuity of y’(x)— in this way the condition (8) is also necessary for the linear

convergence of our class of iteration methods x,,,, = y(x,) and for the exis-
tence of the solution x*€S [11, p. 536].
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