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Abstract. In this paper we give functional limit theorems for the likeli-
hood ratio processes corresponding to given parametric statistical models.
The theorems are proved for the simplest statistical models, i.e. with only
two probability measures, as well as for the general ones. By applying these
theorems we obtain ,,predictable” sufficient conditions for asymptotic nor-
mality of the maximum likelihood estimators.

Introduction

One of the basic objects in mathematical statistics is the general sta-
tistical parametric model & = {(Q, F), Ps, # €0} where (2, F) is measurable
space, the (Ps)sco are probability measures on (2, F) depending on #€0C
CRm™, and m= 1. Suppose, the general statistical parametric model & is supp-
lemented with right-continuous filtration F = (Fy) =0 which is a family of
non-decreasing right-continuous o-algebras (F,),zo, v F, = F. This addi-

tional assumption allows us to associate with every cL’ and fixed #€6 the
likelihood ratio process z and to use for its investigation the general theory of
stochastic processes. By definition 2 = (2(9’, 9))sco Where 2(9’, 8) is the
likelihood ratio process of the simplest statistical model &,={(@, F, F), Py,
P3} defined in (1), #€0.

Among the various statistical parametric models an essential role is
played by the Gaussian one, i.e. by the model with likelihood ratio process
Z = (Z(9))i=0, 9co given by

) 2(9) = exp[N(#) —i<N(a9)>{]

where N = (N,(q?)),zo seo is a continuous (a.s.) Gaussian field given on a pro-
bability space (@, F, P) with filtration F = (Fi)=0 and such that N(®) =
= (N(9), Fi)i=0 is a P-martingale for every €0, (N(8)), = DN/(#).
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Consider the sequence of general statistical parametric models &" =
= {(@", Fr, F"), P3, #€0}, n=1, and the corresponding likelihood ratio
processes 2" = (zg‘(ﬁ’, 19)),50, »co, N=1. We are interested in weak conver-
gence of distributions of the normalized likelihood ratio process

i = (Z?(u’(o)fEO, uceUMy)»

where ZP(u, 0) = 2}(# + u/c,,, #), (¢,)n=1 is normalizing sequence, ¢, >0, U =
= {u: #+czlucO}, to the distributions of the likelihood ratio process Z of
the Gaussian model. Since the likelihood ratio process Z" is a function of
(w, t, u) we can consider functional limit theorems of three types:

(i) for fixed u with respect to ¢,
(ii) for fixed f with respect to u,
(iii) with respect to (t, u).

Functional limit theorems of type (i) in discrete time case have been
obtained by Greenwood, Shiryayev [5] and by Kordzahia [12].

Functional limit theorems of type (ii) were proved in the papers of Pra-
kasa Rao [20], [21], Inagaki [7], Weiss and Wolfowitz [26], Ibragimov and
Hasminskij [6], Kutoyants [13].

The aim of this paper is to obtain functional limit theorems of type (i)
and (i) in ,,predictable” terms (i.e. with the conditions on predictable pro-
cesses) for the continuous time case.

In 1 basic facts about the likelihood ratio processes, the formulas for
the change of the measure in mathematical expectations, the inequality of
Lenglart-Rebolledo and also the criteria of contiguity of probability measures
are given.

In 2 we consider the simplest statistical models &, = {(?, F, F), P, P},
i.e. the models with two probability measures P and P. We obtain here
necessary and sufficient conditions for weak convergence of the distributions
of likelihood ratio process Z" to those of the likelihood ratio process Z =
= (Zt)=0 of the Gaussian model with

Z, = exp [N,—%.(N)t]

where N = (Np)=0 is a Gaussian martingale, i.e. a Gaussian process with
independent increments, with mathematical expectation EN, = 0 and vari-
ance DN, = (N), (see Theorems 2, 3).

In 3 we consider the general statistical parametric models &" and give
“predictable”’ conditions for the convergence of finite dimensional distri-
butions of the process Z% = (Z#(u, 0))ucun,, With fixed T=>0 to the ones of
the process Z; = (Z1(u))ucgm defined by (1), as n—~  (see Theorem 4).

In 4 we prove a functional limit theorem (see Theorem 5) stating that
under some sufficient conditions the distributions of (with respect to u) con-
tinuous modifications Z3 of the processes Z3 weakly converge in C(R™, P?) to
the distributions of the processes Z as n—» o.
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Theorem 5 of 4 can be easily applied to the investigation of properties of
statistical estimators. As an example, we obtain sufficient “predictable”
conditions for the asymptotic normality of maximum likelihood estimators
(see Theorem 6). In particular, this theorem imply the classical results of
Ibragimov and Hasminskij [6] for discrete time and the ‘“schemes of inde-
pendent random variables”.
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ences for providing the possibility to visit University of Helsinki and wor-
king together with my finnish colleague dr. E. Valkeila.

I am very much obliged to professor A. N. Shiryayev for his turning
my interest to limit theorems and also for his helpful remarks and comments.

I also thank my colleagues dr. L. Szeidl and dr. P. Racské for their help.

1. Basic facts

Suppose (2", F"),=, is a sequence of measurable spaces with two pro-
bability measures P" and Pr and right-continuous filiration Fr = (Ff)=o,
v Ff = F", on each of them. Denote by Pp=Pr|Fp, Pp=Pn|Fp the restric-
t= o~
tions of the measures P and Pr to the o-algebra Fy and set Qn=(P"+ Pn)/2,
Qr = Q"|Fp, Assume that the filtration Fr is completed by Qm-null sets
belonging to F™.

By ¢ = (&7, FP)moand {n = (7, Fy)=o we denoted the likelihood pro-
cesses with paths in the space D of right-continuous functions with left-hand
limits and in a way that for every stopping time 7 (Q"—a.s.)

P a:
dQz”

@) =

and " =

We also introduce the likelihood ratio processes Z" = (Z}}, F})go,
Zn = (Zp, Fi)=o with Zp = {pftp, Zp = tp/Cp where we put 0/0 =0,
al0 =  for every a=0.

In the following lemma the properties of the processes ¢, ¢* and Z» are
given.

Lemma 1. (see [16]). (a) The processes (" and {r are non-negative uni-
formly integrable Q-martingales; for every stopping timet {7 + {7 =2 (Q"—a.s.);

P inf ¢p=0) = 1, Pr(inf {p=0) = 1.
t=0 t=0

10%
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(b) The likelihood ratio process Z" is a non-negative P"-supermartingale
and for every stopping time v EnZ7 = 1, where E™ is the expectation with respect to
Pr; the points {0} and { <} are absorbing states (Q"— a.s.) for Z" and

P(sup Zp=z=a)= 1 , Pr(inf Zr=a)=a
t=0 a t=0

Jor every a=0.

The following lemma contains the formulas for the change of the measure
in expectations. We set of = Z}/Z[2. putting 0/0 = 0, = /e = «, and denote
by E™ and E" the expectations with respect to P" and P~ respectively.

Lemma 2. (see [16]). For every stopping time v and every nonnegative Fy
measurable random variable n we have

Ern=EmmZ"+ E'”nl(Zi‘ = o)
where I(-) is an indicator function. If T=0 is predictable stopping time then
(Pr—a.s.)
Er(n|Fr_) = I(ZP- < o )En(nal| F_) + Er(nI(Z2 = «)|F™).
In the Lemma 3 we formulate the very important Lenglart-Rebolledo in-
equality.

Lemma 3. (see [16]). Let X"=(X7, Fi)=0 and Y™ = (Y}, F})=0 be two
non-neg ativeprocesses, X3 = Y3 = 0, with paths in D, Y=Y} (P"—a.s.) for
s=t. If for each finite stopping time o

ErX3=Ery;
then for every stopping time v and a=0, b=0
Pr(sup Xp=a)=<(b+E"sup AY})a+P(Y:=b),
0=t O=st=r

=Il=v

where AYP} = Y7—Y7_. In the case of predictable process Y™
P*(sup X?=a)=cla+ PY(Y;=b).

Osts<

Corollary 1. (see [15]). Lef the sequence of processes (X", Y ™)n=1 Satisfy the
conditions of Lemma 3 and the process Y " is either predictable or

PY(supaYp=c) =1
t=0
Jor some ¢=0. Then for every stopping time z the following implication holds
(Y220)={ sup Xp——0)
Ost=v

Now we consider briefly the notion of contiguity and connected notions.
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Definition 1. (see [14], [22] and [16]). The sequence of probability mea-
sures (P")n=1 is called to be contiguous to the sequence of probability measu-

res (P"),=1 (denoted by (13")<1 (Pn)) iff for any sequence of the sets (A")n=1,
Ar¢ Fr the implication

{P"(A")~0, n— «}={P"(A")~0, n—~«} holds.
If (Pr)<(P™) and (P")<(Pn) then the sequences of probability measures
(Pry and (Pr) are mutually contiguous, i.e. (Py<a>(Pr). O

The notion of contiguity is closely connected with the notion of tight-
ness (see Theorem 1).

Definition 2. Let ¢&* be an F"-measurable random variable, n=1. The
sequence (¢, Pm) is said to be tight iff

lim lim P(|&"|=L) =0

Lo N-—»oo

To formulate general criteria of contiguity we also introduce the notion
of the Hellinger process. To this end we define the processes

(3) B = (B FM=o, 1(x) = (A(xX), FPt=0, AM(x) = (A7(x), F)=o0
with
4) Br = ((¢r)e +(Er)e)e,
p(x) = (1+x(¢p)e) v o, ax) = (1=x(Z)®) v 0,
where x€R! and

0 ifa=0,
(5) a® =ql/aif a =0, |a|# <,
0 if |a| =

Definition 3. (see [16], [10] and [17]). The process H" = (H}, F)=o is
said to be the Hellinger process corresponding to P*, P" and F" iff

@ HE= o N () -V @Y *ven, o)

where ( (") is the quadratic characteristic of the continuous martingale part
of ¢n, vn on is the compensator of the jump measure of {” with respect to

(F, Q") O
Here and further on the notations ““ o “ and “ % *“ are used for two types
of Lebesgue-Stiltjes integrals, i.e.

(ho () = [ hd(t™),

@) *ven o) = [ [ gx)ven, on(ds, dx).

[0, tIRI\{0}
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The following theorem gives the general criteria of contiguity.
Theorem 1. (see [16], [5]). Each of the following conditions
(a) the sequence (Zn., Pp) is tight,
(b) the sequence ( sup Z7, P3.) is tight,
Os=t=T

(c) for every subsequence Z converging weakly with respect to P« to Z’
the equality EZ’ = 1 holds,
(d) the sequences (Z3, P%), (osggra?, P%), (H%, Pn.) are tight,

is necessary and sufficient for (P%)< (P%).

Parallel with the Hellinger process H" we consider the process B® =
= (B}, Fp)=0 with

1 -
) Bf = (8" o (8"))+ (I(Z2 = 0)(YY(x) — 1)2 % vz, pr);
where
Zn = (28, F))t=o, Y(x) = (Y(x), FP)=0, Y(X) = (1 +x(Z-)®) VO,

and I(-)is an indicator function.

As we shall see later, there is a close relationship between B® and H".
In the following Lemma 4 we give the estimations for them. Let us define the
stopping times

(8) =inf{t=0:¢P==<1/k}, 70 = inf{t=0:(P=1/k}, TR = ¥} A T]
fork = 1,2, ..., withinf {0} = o.
Lemma 4. For every n=1, k=1 and t =0 we have
9) E"Bf\rn, =E"H{)\rn, =4k,
(10) En|H}yn, — Bfyrn, | = 4kPr(tPyn, = 0).
Proof. From [23, Theorem 1] it follows that for every =0

EgHf\1n, = EQ(1 0 H"), T"k§kE<3(I/C?—C.?— o H)¢prn, =
=ko*(P}yrn,, Piyrn,)=2k

where Eg is the expectation with respect to Q" and o(.,.) is the Hellinger
distance. So,

(11) E"Hfyrn, = EQCWHY T, =4k,
because by Lemmall, {2 = lim {p=2.

t—+ o

Now we show that

(12) En((VY™(x) — 1) pzn )rn, < oo
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where pzn is the jump measure of Z*. For this purpose we consider a localizing
sequence of stopping times

= inf{t=0: (VV"(x) - 12 % pzr)=r}, r =1, 2,

with inf {#l} = . Because Z}. = E;’/C;‘_g 1/(2k) for (w, t)€[0, T7] and,
hence, of = Z"/Z,"_kaZ'l by Lemma 1 we get

EY((YY™(x) = 1)2% pzn )1, po, =7+ EM(1 =V, 1o )2 =1+ 2k + 1.

By virtue of Yn(AZR) = AN(ALn)/AN(AtR) on (w, s)€[0, T7] and
Lemma 1, we get from [11, Proposition 3] and [16, Lemma 2.3] that

E"((VM— 1 )2 * Mz")r"k he =
= E"(I (A(x) > 0)((1/}:"(")/ An(x) — 1)2 *; .Uc")'r"k hop =
= E"(10r () > 0)(Y 7002 (x) = 125 ven, pn) 1oy =

= E"(1(an(x) = 0) (Y A(x) — Y AC0))? % wen, @)1, 1o, = EnHEn, = 4k

Since the sequence of stopping times (o, )r=1 is nondecreasing, there exists
¢ = lim ¢, and by Fatou’s lemma we get

E"((Vy"(x) —1)2% Hz")r"k ho =

The integrand on the left-hand side of this mequahty is equal to infinity on
the set {o<T7}. So, the set {o<T7} has P"-measure zero and we get (12).
For every bounded predictable function f we get from (6) and (7) that

En(f o By, = %E"(fﬂ" o (m))entm, +

+ E(f 1z = 0) (Y 77(x) — )2 vzm, pn)ermy,
EX(f o HYyrn, = - BB o ) +
+ E"(f (m;) — VA (x))? % ven, Q")t AT
Furthermore, from (12), [11, Proposition 3] and [16, Lemma 2.3] we obtain

ENf1(zn = ) (Y ¥7(0) — 1) vzm, pn ey m, =
= E(f1(Z2 > O)(YV7(x) ~ 1) % pzn)ea 7m, =

= E(f1(n(0) > 0)( Fr() () — 1) % pren ey 7o, =

= E(f10r(x) = O)(Y/ Ar(0)/2°(x) = 1) ven, pn)ey 7o, =
= E(f1(n(x) = O/ n(x) — VRGO % wer, @ e 17,
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Taking f=1 in the above equalities we get (9) from (11).
To prove (10) we choose f to be equal to the predictable function f* such
that | f*| =2,

En|\HEyn, — Bfy | SEM(f % o (H*— B"))ta 1™
Then from the above equalities we have
E"|Hfyrn,— Bfyn, | = 2E(I("(xX) = 0)An(X) % ven, g)er 17, =
=AEY(I(An(x) = 0)A"(x) * ven, a1, =
= 4EZ(I1((x) = O)A"(x) % e )y 77, =

= 4kER(ErI(an(x) = 0) % uen )iy 77, = 4kBR (£ 7n, = 0).
The inequality (10) is proved. OJ

2. Functional limit theorems for likelihood ratio
processes of the simplest statistical models

In this paragraph we consider the simplest statistical models &7 =
={(@2, F, F"), P", Pr},= where (27, F") are measurable spaces, F" are right-

continuous filtrations, v F} = F", completed by the Q"-null sets of F», and
t=0

Pn, Pn are probability measures on (2", Fm). Throughout this paragraph we

use the notation of 1. We apply the expression u,— p to indicate that

P(|p,—p|>€e)>0asn—-o, yYe=0, and by I(- ) we denote an indicator
function.

Theorem 2. Let A, be a nonnegative continuous deterministic function,
O0=t=T, A, = 0, and let N = (N,)=0 be a Gaussian martingale with (N), =
= 4A,. Suppose that the measures (P%) and (P}) are mutually contiguous, i.e.
(P2)< > (P3), andfor every 0<t=T and e=0

(A) Zgt—1,
(8) (YY)~ 12 (VTP 1| =) vzm, ) =0,
) Br.a,

Then for Zr = (Z7, Ff)=0 we have

(P)
Zn

exp [N— L <N>]

D (P™)
where —~

respect to P,
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Remark 1. Under the mutual contiguity (P%)< > (P%), the condition
(C) is equivalent to

pn
(C') Hp—— A,

Remark 2. The same theorem for discrete time was obtained in [5]. In
a slightly different formulation, Theorem 2 was obtained in [12].

Proof of Theorem 2. For n=1 let us introduce the stopping times
(13) 7" = inf{t=0: ¢p=1/n}, 7" = inf{t=0: {P=1/n} and
T = " A" with inf {§} =

The proof of Theorem 2 will be given according to the following plan.
We shall show that under conditions (A), (B) and (C) the following conclu-
sions hold:

(i) Pn(oiltlgrlz?_z?/\ ™| Ze) >0, N>, Ye=0,
(ii) P"(oilg)TlZ;‘A mn—exp(VP)| =ze)~0, n+ o, Ve=>0,
(iii) yn 217 N—— (N

where V" = (Vp, F)=0is the process built in some special way. It is evident
that (i), (ii), and (iii) imply Theorem 2.
We show that (P2)< (P}) implies the relation (i). From (13) we have

Pr( sup |Zp—Zp | Z=e)=P(T"=T)=P"(z"=T)+P*(z"=T).
0=t=T
(14)

By Lemma 1 (R = 2 (Q"—a.s.) for every stopping time 7, and, hence,
Zn = 2/t —1 (P"—a.s.). From the same Lemma 1

Pran=T) =P}, m=1/n) = PY(Z3 n=2n—1)=
=Pr( sup Zi=2n—1)=1/2n—1)

O0=st=T

whence lim P*(z"=T) = 0. In the same way

Nn->oo

Pr(@<=T)=P( sup Zr=2n—1)=1/(2n—1)
O0=t=T

which together with the contiguity (P% )<1(P ) gives lim P*z"=<T) = 0.

From here
(15) lim P(T"<T) =0

n—+eo

which together with (14) implies (i).
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To prove the relation (ii) for every =0 we set
of = Zp/Zp_ and &} = Zp/Zp

putting 0/0 = 0 and /e = . Since Q"—a.s. Z = 1/Z7, ap = 1/af for

every t=0 and Y(aZp) = A alP)An(aly) for (o, H)€[0, T"] from [16,
Theorem 2.1] substituting

Zp, 7, af, A(—x), A(—x) and P" for Z}, 7, af, A%(x), A7(x) and P~
respectively, for f=0 and L>0 (P"—a.s.) we get:
Z{yn = Z% exp { D, (Inat— U (In a)) + 2Mpe — 2GFy 7+

O<s=t<T
+ (UL(ln (An(x)[A7(x))) * (pen — ver, P“))t AT —
(G E )k ver, ey 1o} =Zgexp | 3 (Inap—Uy(nap)+

l0<S§ff\ T

+2Mpe = 2G¢ T+ (U L(In Y7(x)) % (uzn — vzn, P"))r AT —

(16) —(GU(Y"(0)) % vzn, )y T"}
where M = (M7p¢, F)=0 is a continuous P"-martingale with
1
(17) (Mrey, = G yrn = T(ﬂ" o (L"))en
x if |x|=L,
UL(x) ={ . x| .
L signx if |x| =L,

G.(x) =x—1-U,(Inx).
Let us introduce the process V* = (V?, F})=o With

(18)  Vp = 2Mpe+ A(Y V@) — 1)2% (uzn—vzn, o) g 77— 287y 7.
From Lemma 4

E((Y V()= 1)® % vzn,pn)y , pn = ENBY, mn=4n

and from [11, Theorem 2] we conclude that the integral ((}/ Yr(x)—1)*

* (uzn—wvzn, p")). rrn is well-defined and it is a square-integrable martingale.
So, the process V" is well-defined.
Now we continue the proof of (ii). For this purpose let us set (F; =

={|1-Zp|=8}Nn{ sup |1—V«p| =8} with 0<d<1. Then for every ¢=0,
O<t=T
A=0
P( sup |Zf, rn—exp(V])| =) =
Ost=T
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§P"({Os¥1pT|ln Z} =V = 8(e, ANINFs)+
+P"(osup Z;‘gA)+P"(|1—Zg|za)+P"(osup |1—V°_tﬂ =)
=t=T =t=T

where d(e, A) = min {In(1+¢/A), |In(1—¢/A)|}.
According to Lemma 1

Pn( sup Z?EA)S]/Ar v A>0)
0=t=T
and by the condition 1)
Pr(|1-Z3|=8)~0, n—> .
Hence, for (ii) it is sufficient so show that
(19) Pr( sup |1 —Vap| =8)~0, n—~ =,
O<t=T
and

(20)  lim 1lim lim Pr({ sup |InZ}y o — V| = 8(e, A)}N(Fs) = O-
A+ 620 n+e Ost=T

n
To prove (19) we note that
(21) Pr(sup |1 —Vap|=8)=Pr( sup |l—Vaf|=8)+P (T =T).
O<t=T O<t=TAT"
Further, because «f = Y}( & Z}) for (w, t)€[0, T"], we get
P sup |1—Vaf|=8)=P( 2””1(|1—;/;?| =6/2)=1)=

O<t=TAT O<t=T

(22) =P( 2 —Ve) I(|1 —Va}| = 8/2) = 8%/4) =

= (VY (x) = 1D IV Y700 — 1| = 8/2) %k uzn)ry 7n = 6%/4).

From [11, Proposition 3] and (12) we find that for every finite stopping
timez

@3)  E(Y - 12 I(|[VY"(x) — 1| = 8/2) % pzn)s 1 =
= EN((VV7 ) — 1) I([V V() ~ 1) | = 8/2) % vz, pr). 7
Using Lemma 3 we obtain for every y=0
PV V7O~ 12 1|V V7O — 1| = 8/2) % pzn)r 7= 6%/4) =
=y + PV 7~ 12 1([V V7 — 1| = 8/2) % »2m, pn)r yn =y 67/4).
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Therefore, because of (21), (22), (15) and condition (B), after taking

lim lim in the above inequality (19) follows.
y=+0n—+e

To establish (20) we use Taylor formula and (16), (18) and also

G(x) + U(x) =q.(1-Vx)?, x=0,

where the constant ¢, depends on L. Then for L>2max (In(1+é), |In(1—d)|)
on the set (75 we have

[InZiyrn—Vp| =|InZj| +
+(1=8) 2| (/Y ) = 1) I([V V")~ 1| =8) % (uzn—vzn, pr)ertn| +
+8(1—8)((V VG — 12 I(|V77G) — 1] =8) % vzm, pn) o+

@) +C(L, YY) = D2 I VY ()~ 1| =8) % pzn)eypn+

+Co(L, (VY0 = 12 I( |V V() = 1| = 8) vz, pn )y o
where

Cy(L, 8) = LJ8%+2/8, Cy(L, 8) = L[8%+ L2/6% +2/6+q, +2.

By condition (A)

(25) lim Pn(|ln Zg| = (e, A)/5) = 0.

n—>co

In order to estimate the second term on the right-hand side of (24) we note
that for every finite stopping time ¢

E(((Y V@) = 1) I(| YY) — 1] =8) % (uzn—vzn, pn) ey 7n)” =
= EN(VV"(x)— 1P I(| VY 7(x) — 1| =8) % (uzn—vzn, pn))ey 7o = 8°ENBY 7n.
Hence, from Lemma 3

Pr( sup | (770~ 1* IV V7@~ 1| =0) (uan vz, o))y n | =

(26) =5(c, A)[5)=06(e, A) +Pr(B2 = 6%(e, A)/(256%)).

As the sequence (B%, P™) is tight and é(e, A)—~0 when A— =, from (26) we
get

lim lim lim P"( sup_ ‘((VY"(x)— D2 1([VY(x)—1| =8) %
(2T) Avwé-On-w

* (uzn—vzn, et | 28(e, A)5) = 0.
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For the third term on the right-hand side of (24) we have

tim fim PA(((V V7G0 - 1) 1([V V7~ 1] =0) % vz, )iy 7n=

(28) =5(s, A)/(58)) = lim fim Pr(B3=5(e, A)/(58)) = O,

because of the tightness of (B}, Pn).
From condition (B) and Corollary 1 it follows that

tim P(((Y Y7G0) - 1)2 I(| Y VP(x) - 1 | = 6) % pzn)rprn=

N—+ oo

=8¢, A)/(5C4(L, 8))) = 0,
lim P"(((VW(T)" DIV YP(x)— 1| =6) % vzn, P")T ATNE

=8, A)/(5C,(L, 8))) = 0.
These relations together with (24), (25), (27) and (28) imply (20) and hence,
(ii).

Now we prove the relation (iii). From (18) we get

(29) Vi = 2Mp—2B7yrn

where M = (/\71,", FP)=0 is a square integrable P"-martingale with
(30) wp = Mg+ ((VV7) — 1) % (uzn— v, pr)ea on.
Since for every e=0

Pr( sup |Bfyrn— A, =¢e)=Pr( sup |BF— A, z=e)+PY(T"=T),
0=t=T 0=t=T
from condition (C), [18, Lemma 1] and (15) we find that
(31) Pr( sup |Bfytn— A z=e)>0,n~, Ve=>0.
Ost=T

Hence, by [15, Corollary 2], we need only to show that for every O<t=<T
ande=0

Pn
(32) (xI(|x] =€) % Yo o)t 0,

(33) G, A,

First we prove the Lindeberg condition (32). Because of [2, Corollary
9.37], [11, Theorem 2] and Lemma 4

Er( I(|x| =e) kug W =E" 3 (&Mz)?=EMny=E"Bi\rn=4n,
A O<s=t
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we have
(2 I(|x| =e)* orn, o)t = COmMPLn(X* I([X| =€) ¥y, )y
where comp,, denotes the operation of the taking of the compensator with
respect to (F, P").
After setting for 6<e/2and 0<s=T
AMM = f (YY) - DIV Y2(x) — 1| =8)(uzn({s}, dx) —
RI\{0}
—vzn, pr({s}, dx))
and
amp? = [ (V¥ - DIV Vi)~ 1] = 8)(uzn((s}, dx) -
RI\{0}
—vzn, pr({s}), dx))
we get from (30) that for (w, s)€[0, t A T7]
AMI = AMPIL AMD2,

Because of | AM™ 1| =26, from the previous expression we have

CI(|x|ze) kg, )= > KON O (PSHEDE
O<ss=tAT

=2 3 (aM»®2+2 3 (AMBI(|aAMr| =)=
n O<sstAT?

O<sstAT

=(2+8))(e~20)7) 3 (&MY =2(2+88(c~ 20))-

((VV”—(X)— 1)2 1( l Vm—l l %5)*(,“2"4'1’2",13")):”"-

According to [4, Lemma 2, §2, Ch. 2] and (12) the same inequality holds
(Pn—a.s.) for the compensators of these processes with respect to (F, P").
Since the compensator of the right-hand side in the above inequality is
equal to

4((2+882) (e — 20 (Y77 (x) — 12 I(|[ Y V7(x) — 1| = 8) % wzm, pn)y s,
we have (32) from condition (B).
Now we prove (33). According to [11, Theorem 2] we get

(34) <M">t = B;IA rn—U}

where

(35) up= 3 ([ (/75— 1)z, en({s}, dx))".

O<s=tpAT" RI\ (0}
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Because of (31) and (34) it is sufficient to show that for every e=0

(36) P (Ut =e)—-0, n— .
For this purpose we set
AU™ = {(w, t): Up # Up_}

Then, by [2, Theorem 6.46] we get
37) aur = .Ul [S7]
j=

where §7, j=1, are predictable stopping times and
[STIN[S7] = 0 for i=j.
We have from [8, Lemma, p. 229]

21(Si=T AT [ (Y Vin (0)— 1rzn, po({S5), d)
RI\{0}

= 2E"(I(S7=T A Tn)(V@j— 1)| Fg,,j_) =
—I(S7=T A T")(ABg,,j +En(1—agn | anj_)).

(38)

Using Lemma 2 we obtain
En(1— ocg.nj| anj_) =

(38a) .
= I(Zgnj_ = 0)+I(Zgnj_>0)E"(l(a§nj= o )| F5n;-)

which together with (38) gives
-21 I(S3=T A T")(ABgnj)2 +
j=

[IA

Uz

T AT Er(I(on, = )| Fin,))' =

IA

+3 (8]
j=1

=( sup ABI)B} + S Pr(S) =T AT fadn, = =}|Fén ).
<S§= j=l

Since A, is a continuous function, from condition (C) and [18, Lemma 1]

it follows that
P( sup AB?=¢)—~0, n—+ e VYe=0.

O<s=T
Since the sequence (B%, P") is tight, for (36) it remains to show that

< B n n P
69 = 3PS =T ATl = =} Fir) <=0,
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For every a=0 we have from [2, Theorem 5.26]
{PUS]=T AT {on; = =} | Fin, ) =a} =
= {I(S}=T AT")P(afn; = o= |F3n, )>a} =
= {S}=T AT} {P(ofr; = = |Fn;-)>a}e F} -

If we exclude from the sum in (39) the addends which are equal to zero then
Yn will be F-measurable. By Lemma 2 for arbitrary L=>0

(40) Pr(Pr=¢)=LP(¥r=¢)+Pr(Z3=L).
By Lemma 3 for 0<e<1 and O0<é<1

~ 1 ~
PrWrze)=0+—E"sup I({S}=T AT"}N{adn; = =} +
€ i

(41) +13n[2"11({s;?§T/\T"}m{a’s‘n,. = w})éeé]éﬂ
=

1 ~
+—E“sjup I{ST=T AT }N{usp = =})+
€

+Pr( sup of = oo)<a+[1 +—1—]P"( sup afl = oo).

O<s=T O<s=T

Since Pr(sup «f = ) = 0 and (P})< (P), we get that

O<t=T

P"( sup a! = )—0, n> .

O<s=T

In addition, by (P2)< (P ) and Theorem 1
lim lim Py(Zp=L) = 0.

Lo n—+ow

Hence, (40) and (41) imply (39) after the operations lim Tim lim, that gives
L+o 6+0n—+c

(36). So, the relation (33) is proved together with (iii). Theorem 2 is proved. O

Proof of Remark 1. Let us consider the stopping times defined by (8).
For every O<t=T and ¢>0 we have

Pr(|H} — l>3)<Pn(|Hu\T" Alze)+PY(Ti=t)=
(42) <Pn(|Hu\T" - BtAT” "—6/2)+Pn(|BtAT" — Al =e2) +
+PY(Tp<t)= (2/3)E"|HMTn - tnAT"k| +Pr(| B} — Ayl = ¢/2) +
+2PY (T =t).
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In the same way
Pr(|By— A/ =€) =(2/ e)E"\HMTn —B{'Arnkl +Pr(|Hp— Ay = ¢[2) +

(43) + 2PV (TR =t).
Because of (P7) < (P7) we have, similarly to (15), that
(44) lim lim PYT7=f) = 0

K=o N+ oo
From Lemma 1, (P})< (Pp) and the bound (10) of Lemma 4 we obtain
(44a) lim Er|H — B! =0

which together with (42), (43), (44) gives the equivalence of (C) and (C").

In the following theorem we prove the necessity of the conditions of
Theorem 2.

Theorem 3. Suppose that

n n
tATk tAT™),

(45) 77270 oy [N—— (N)]

where N = (Nyost=t is a Gaussian martingale, with Ny = 0 and continuous

quadratic characteristic { N),. Then (P})< > (Pp) and conditions (A), (B) and
(C) are satisfied.

Remark 3. For the discrete time case this theorem was proved in [5].

Proof of Theorem 3. The proof will be performed according to the follo-
wing plan: we establish that

@ (45)=(P§) < > (Pp),

Dp(P")

(i) (45)=(A), (B), (45)= {v"—»N—§<N>},

(i) {v""“ N——<N>}={[v" V)~ [N, N, 0<t=T)
and

(iiii) (v, val, 22 [N, N1, 0<t=T}=(C)

where [.,- ] is the quadratic variation process.

To prove (Pp )< (P%) we note that a Gaussian martingale N is by defi-
nition a martingale with Gaussian finite dimensional distributions. From this
it follows that N is a Gaussian process with independent increments and
EN, = EN, = 0, DN, = {(N),. Because of the continuity of the quadratic
characteristic ( N) of the Gaussian martingale N, it is also continuous with

11 ANNALES — Sectio Computatorica — Tomus VI.
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probability 1. This fact implies that the projection Z—~Z, is a continuous
function for the limit process in (45) for every O={=T. In particular, accor-
ding to [1, Theorem 5.1]

(46) 2% exp [NT ——<N>T]

d(P™ . . e .
where —— denotes convergence in distribution.
Since Eexp [NT—%<N>T]= 1, from (46) and Theorem 1 we get that

(Pry<(Py). 1
To prove (P’;)<](ﬁ¥) we note that P[exp[NT—?(N}T =0|=

=P(N; = — «)=0. This relation together with (46), [1, Theorem 5.1] and
Zp = 1/Z2 (Q"—a.s.) gives

72282 exp [NT F— (N)T]

In particular, for L>exp((N)/2) we have lim P"(Z’;zL):P[exp[NT +
Nn—>oco

1
+;<N>T]2L] = PN =1In L—(N)7/2)=(N)/(In L—(N)r/2)"
From this inequality it follows that

lim lim PY(Zp=L) = 0,
L+ n—+o
which, according to Theorem 1, implies (P}) < (P;)

Now we prove the implications (jj). Condition (A) follows from (45) by
virtue of measurability in D and continuity (at all points of continuity of the
limit process) of projection Z—Z,, in particular at f = 0.

To obtain condition (B) let us consider the functional
18, Z) = inf {0<t=T:|4AZ,| = 8}

with inf {#} = T+1, 6>0. The functional 7(8, Z) is measurable in D and
continuous on the set {Z : |4Z,| = 8, 0=t= T}. Since the limit process in (45)
is continuous with probability 1, for every 6=0

d(P™

(8, Z7) <52 7(8, Z)

where Z = exp(N—1/2(N)). But #(8, Z) = T+ 1 with probability 1, and,
hence, for everyO=¢=T and every 6=0

(47) lim PY(z(8, Z")=t) = 0.
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Since Y(4Z7)=a? for (o, s)€[0, T"] and Zr=1/Zr (Q"—a.s.), for every
6=0, e>0, A>0 and O<t=T we have
P(((YVG - 12 I(| V7o)~ 1] =8) kuzn)arnze) =

=P sup |1—Voap|=8)=P( sup |l—af|z=é)=
O<sstATP O<s=t\T!

(48) =Pn(sup Zn= A)+P(z(8/ A, Z") =t).
O<s=t

From the contiguity (P2)< (P}) and Theorem 1 we conclude that the se-
quence ( sup Z2, P") is tight, i.e.
O<s=t

lim lim Pn( sup Zi= A) = 0.

A+ N+oo O<s=t

Now, from (47), (48) after the operation lim Iim we obtain

A+ N+>oco

@9 (V7701 IV T~ 1] =8) % pzn)e s 0~ 0.

We consider the stopping times T7 defined by (8). By (49) for every
k=1

(V77— 2 (| Y770 — 1] = 8) % pzn)ey 17— 0.

Because of Y(AZD) = I(A?)/A(ALE) and 0 <AXALD) = (pjer_ =2k
for (o, 5)€[0, t A T}], we have from the above expression, that

60) (V7@ - Vi) I V) () - 1] =8) % uen)iy 1o, o

and by contiguity (P}) < (P%) the same relation holds with respect to Qn.
From the proof of Lemma 4, EZH}, ;» =2k. Moreover, in the same way
k
as the proof of (12) we get

(V7@ - V) 1] V@) (x) — 1| =8) % pen) 1, < o

This relation together with [11, Proposition 3] gives that for every finite
stopping time ¢

(VG — Y are): 1|V ir(0)/an(x) — 1| =8) % pen)ey 70, =
= E(/F@ - V) 1| Vi@ — 1] =8) % ver, n)er 7y

Then, by Lemma 3 we have for every e=0, =0

QW D - Vire) I Vi) () — 1] =8) % 9en, g )er 7 =€) =y +

11%
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+%Es{ sup , (TAED - (atm)*x

O<sstA T
x (| Vi@ 1| o)+ (7 -
—Vin(x))? 1( I ]/}:"(x)/},n(x) -1 | =4) *mn)“\ ™, = ey).

Since  AN(ALD) = LR/LP_=2k, AN(ALD) = [fjii_=2k for (w, S)E
€[0, t A T¢], from this inequality, the relation (50) with respect to Q" and

the Lebesgue dominated convergence theorem we have after lim lim:
y-+0 n-n-»

6D (VF@-VF@Y (V@) —1] =8) % v, on)es 17, 0.

This implies, of course, the same relation with respect to the measure P~.
Furthermore, for every e=0

P"(((VV"—(X)— D2 I([VV(X)— 1| =8) % vzn, P“)M T"kés)é

= P(((YZG) ~ Vi) 1|V in()/a7(x) — 1| =8) ¥ wen, @)y ™ Zef2) +
+@lE (V77— 12 I([V 77~ 1| =8) % »n, pn)ey 17, —
(V7)Y 1 Vi) (x) 1] 28) % ven, gn ) ™|

The first term on the right-hand side of this inequality tends to zero as
n- o by (51), and the second one can be estimated — as in Lemma 4 — by
(8k/e)P"(C,A ™, = 0) which in turn tends to zero as n— - by Lemma 1 and
(P3)<1 (P}). So, the left-hand side of the above inequality tends to zero as
n- oo, which, by (44), implies condition (B).

To finish the proof of the implications (jj) we have to show that the
sequence (B%, Pn) is tight. For every L>1 and k=1 we have

PY(B}=L)=P*(B%, tn =L)+ P (T}=T)=P(H}=L-1)+
+E"BY o, —HY, n | +PY(TR=T).

By the contiguity (P})<(Pp) and Theorem 1 we get that the sequence
(H%, P is tight. By Lemmas 1 and 4 and (Pr)< (P2 ) we have also that

EnlBTATn HTATnkI_»O and n— o.

According to these facts and (44) we find after lim lim lim that the
L+ K+ N+
sequence (B%, Pr) is tight.

From conditions (A) and (B), the tightness of the sequence (B%, P") and
from the proof of the relations (i) and (ii) in Theorem 2 we find that for
every e>0

P"(Osup |Zp—exp (V)| =e) >0, n— .
=st=T



LIMIT THEOREMS FOR LIKELIHOOD 165

This relation and (45) give by virtue of the continuity of the mapping Z—~1nZ
on the set {Z>0} that

Dr(P™

yn—m=N —— <N) )
and the implications (jj) are proved.
To prove (jjj) we represent the process V" as the sum of three components

VP = Ni(a)+ V) + Fi(a)
where a=0 and

Ni(a) = 207+ 20(Y V) — DI V7P — 1| =a) % (uzr— vz, p2) a1
Vi(a) = A7 - DI([V7 @) — 1] > @) % uzn )y 10,

Fp(a) = —2Bp, in—2((/ V") — DI([VY™(x)— 1| > a) % vzn,pn), , 1a.

According to [9, Theorem 1.8] it is sufficient to show that for every a=0
and 0<t=T

() sup E"(sup |ANK(@)[) < =,

(ii) lim sup P"( sup |V"(a)| >0) =0,

a-» oo

n n
(i) bliT sup P"(Var(F"(a)),=b) = 0.
The relation (i) is evident. To establish (ii) we note that for a> 1

P"(Oslls;; :l Vi(a)| >0)=

(V7@ - 1) 1|V 7)1 | > @) kuzn)ey 0> 0) =

= P((Y77 ) - 12 1| VPR — 1] =a) sz o= 1/2)

and the last probability tends to zero as n— = by (49). So, for every e>0
there exists 1, = ny(e) such that for every n=n, and a> 1

(52) Pr( sup |V2(a)| >0)<e.
O<s=t
For n<n, and a> 1 we have from Lemma 4 and (23)

Pr( sup |V(a)| >0)=
O0<s=t

(53) §P"(((}/Y"(x) 12 I(|YY"(x)—1]| =a)* pzn)e g 1n = a/2) =
=(2E"B}', n)la=8n,/a.
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Hence, for every a>max(8ny(e)/e, 1) we obtain from (52) and (53)
sup Pn( sup |V1|=0)<e,
n O<s=t

i.e., condition (ii) holds.
Since the sequence (B%, P") is tight and

Var (FY(a)),=2B7, i+ 4([VY"x)— 1| I([VY"(X) = 1| = a) % vz, pn )iy 1o =

(54) = (2+4/a)B}., ;n=(2+4/a)B7,

we get for every O<t=T

(55) lim Tim P(Var (F(a)), =b) = 0.
b+ N-+oo

Moreover, by Lemma 4 and (54)
Pr(Var(Fr(a)),=b)=P"(B%, "= b/(2+4/a)) = 4(2+4/a)n/b

and that, together with (55), gives condition (iii). The implication (jjj) is
proved.

To prove the implication (jjjj) we calculate the quadratic variation
[Vn, V], of the process V™. From (18) we have

v, vilo= 4y +d 31 [ (VI -1)-

<
(56) +(uzn({s), dx) — vzn, pn({s), dx))— ABgJ? =
4B7, m+4((YY7 ()= 12 I([VY"(x) — 1| =&) % (uzn—vzn, p) ) n 7+
+ (Y7 — 12 1| V7P~ 1| =) % pzn)y y 7o
— (Y7 — 12 I(|VT7) — 1] =) % vzn, pn)ey 70—
-8 [ [ (VY20 Duzn(ls), dn)]l f VY -1)-

0<S§t A T" R\ {0} R\ (0}

van o) d91+4 3 [ [ (Y73 - 1) vz, pn((s), a0 +

" AT RN

+4 > @BN-8 3 ABr [ YY) —1)uzn({s), dx)—

O<sstAT O<ssIAT! R\ {0}

—vzn, pn({s}, dx))

where the summations are taken over the jumps s of the process V".

Now we show that all terms on the right-hand side of (56) except 4B}, rn,
tend in P"-probability to zero as n— . Indeed, the second term on the right-
hand side of (56) tends in P"-probability to zero as e~0, n— o like in (26) by
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tightness of the sequence (B%, P"), the third term tends to zero as n— « by
virtue of (49) and the fourth term tends to zero as n—~« by condition (B)
proved earlier. The fifth, sixth, seventh and eighth terms on the right-hand
side of (56) tend to zero as n—~ « by virtue of the Cauchy-Schwarz inequality,
the tightness of the sequence (B%, P") and by the relations (36) and

(56a) sup AB? o

O=s=T

which will be proved later.
First suppose for the moment that (36) and (56a) are proved, then from

(56) we get
Pn
[(vr, V],—4Bf, tn —0.
Furthermore, since [N, N] = (N), for every 0={=T we have
Pr(|4Bp —(N),| = e) =P(|[V", V"],— 4BFy | =¢[2) +
+Pr(|[V", VP~ (N),| =ef2) + PY(T=T),
that gives (jjjj) by virtue of the implication (jjj) and the relation (15) follo-
wing from (P3) < (P%).
To prove the relations (36) and (56a) we set
A[ve, vel = {(o, 0:[vV", V= [VE, V)
and note that according to [2, Theorem 6.46 and Theorem 5.16],

afve, vrls UlerlUISH

k=1

where (o7%)k=1 and (Sk)k=1 are the sequences of totally inaccessible and predic-
table stopping times, respectively, with disjoint graphs. Then from (35), (38)
and (38a) we obtain

Ut = ;21 I(Sp=T AT") [Rx\fm} (V Y30~ 1)”2", pn ({S2) d")]2 =
= S1si=T ATYE(Y ot~ 1| F3n, )]’ =
k=1

(57)

MIA

sup {I(Sp=T AT")|E"(} <3, — 1 | F3n,-)|} - {B2 + ¥}

lsk<o

where " is defined by (39) and tends in Pn-probability to zero by

(P3) < > (P}).
Let us show that

— Pn
(58) sup {I(Sp=T AT E"() a&n,— 1| Fin,-)| } = 0.
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By the implication (jjj) and [18, Lemma 1] we get
P"

Vn, Vrl,—(N)| —0
(59) Jsup [ Je— (N )|
and hence

— pn
(60)  sup I(Sg=T AT™)|Y odn,— 1 = E(V an, — 1| Fin,-) = 4B3n, | =0,
By (38) and (38a) again we obtain

sup I(Sp=T AT"AB%, =2 sup |[Val—1|+¥P"
Isk<eo O<s=TAT"

Now, because of (22), (49), (39) and (15) from (60) it follows (56a) and, hence,

(58). From (57), (58), (39) and the tightness of the sequence (B%, P") we have

(36) and that proves the implication (jjjj). Theorem 3 is proved. O

3. Weak convergence of finite dimensional distributions of the likelihood
ratio processes of general statistical models

We consider a sequence of general statistical parametric models
on = {(@r, Fr, F), P}, 4€0}, O R™ n=1, where (", F") are measurable
spaces, P} are probability measures on (27, F*) which depend on m-dimen-
sional parameter ¥ belonging to some open convex subset ® of R™, m=1,
and F* = (F')=0 are families of nondecreasing right-continuous o-algebras
(F)=0 suchthat v Fp=Fn, Fg={#, 2"}. We suppose F" to be P3-complete

t>0
for 9€0.

For an increasing sequence of positive numbers (¢,)n=1 and #€6 we set
U = {u€R™9 +czlucO} and Q = (P31, + P3)[2 for uecUj.

We define the likelihood ratio process Z(u, 0) = (Z#(u, 0), Ff)=0 as
the process with paths in the space D of right-continuous functions with left-
hand limits and in a way that for every F7-stopping time z P3—a.s.

AP}, czu, - ]\[dPS' ]
aQn . Qs -

where P3 ., Py, .\, Qu, . are the restrictions of the measures Pj, P31 et
Q& to the g-algebra F7.

In our theorem an essential role will be played by the Hellinger pro-
cess H(u, v) = (Hf(u, v), FP)=0 corresponding to Pji.tu, P3icty, . and
F" and also by the process

Z%(u, 0) =[

yrx, 1) = (Y%, 1), Fi)mo with yp(x, 1) =(1+x(Zp (4, 0))2) v 0
where the pseudoinversion @ is defined by (5), xe R*,
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As usual we shall denote by vzn, pn the compensator of the jump measure
of Zn(u, 0) with respect to (F*, P3) and by I(-) an indicator function.

Theorem 4. Let for some T>0 a sequence (¢")n=1 exist suchthatO<c,=
=Ch41r Gyt oo aS >0, (Pig, )< D> (P3, 1) for every uc U3, and

(I) for every e=0, ucUj and 0<t=T
(V77 w)= 1AV 1) — 1] = &) % vzn, pro)y -2 0,
(I1) for every u, veUj and O<t=T

Py

»%av(u), NO)).

HE(u, 0)+ HP(v, 0) — Hi(u, v)
Then, for every set (uy, ..., u,) withu,c U3, 1=i=k and k=1, we have

(23U 0), - » Z3(tp 0)T 2 (Zy (), - » Zr(u))T

n
where Z () is defined by (2) and ap) denotes convergence in distribution.
Proof of Theorem 4. We put Q} = (P5+qu+P3)[2, »" = (Qi+Q})/2.
Let us denote by "(u, 0) = (CP(u, 0), F)i=0, C™(u) = (EP(u), Ff)=o0 and

Zr(u, v) = (Zp(u, v), Ff)=0 the processes with paths in D and such that,
for every Fn-stopping time z

dP},. AP} yep—1u,c — Lo (u
O) o 0) = 207 gy = PhranTtmr gy - EW
dQs, - dx? 4409
where we put 0/0 = 0, a/0 = < for every a=0.
According to the notations of 2 for P* = P} and P = Pj..;4,, ucUs

let us define the stopping times 7"(u) and the processes H*(u, 0), B*(u, 0),
Vn(u), Mne(u) and Mn(u) by the formulas (13), (6), (7), (18), (17) and (30)
respectively substituting of ¢7(u, 0) for £7, (2—¢i(u, 0)) for 7, Zp(u, 0) for
Z? and y3(x, u) for Y(X, U).
From conditions (I) and (II) with u = u;, v = u; and the relations (i)
and (ii) of Theorem 2 we get for I=i=k and every e>0
n n — n - - oo
Po(oig)'r |Z7(u;, 0) —exp (VR(u))| ée) 0, n .

Hence, by the continuity of the mapping Z ez it is sufficient to show that

d(P"p)

(Va@), .., Vi)™ —=

[Nr(uo o N@))r - No) - % <N<uk>>T]T-
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For this purpose we use the Cramér-Wold method [l, Theorem 7.7] and
show that for every 4, ..., 4, €R?

D7(P"9)

(62) > V7w za N)-+ z AN )

From (29) we have for 0=¢{=T that
k Kk ~ k
DAV =2 AMP(u;) =2 D) 4B Ty (4, 0).
i=1 i=1 i=1

From the contiguity (P3, 1) < (P3+c;lu, 7) We obtain in the same way as
(15) that P3(T"(u,)) =T)—~0, n— co.

Then condition (II) with u = u;, v = u;. Remark 1 of Theorem 2 and
[18, Lemma 1] imply that

[ sup_| By 17p(t 0) = <N(ui>>,

O=st=s

>e]—>0 n- oo,

This relation and [15, Corollary 2] yield that for (62) we only need to
prove the Lindeberg condition

(63) (I(|x| =) % v5, pny)——0, Ve=0, 0=t=T,

k A
where vz, pn, is the compensator of the jump measure of Z AMn(u)) with

respect to (Fr, P3), and also the convergence of the quadratlc charactenstlc of

the square-integrable P3-martingale 2 Z A M"(u ) to the quadratic characte-

ristic of the Gaussian martingale Z AN(u), i.e., for every 0=t=T

i=1
(64) @ zl ain(nyy 25 ¢ 21 AN

The proof of the Lindeberg condition is similar to that of (32) in Theo-
rem 2. As in Theorem 2 we define M2(y;) and MD2(u) with é<
<e/(2k max |4,]).

Then for ('w, s) = [0, T™(u)]
AM (1) = AM™(u,) + AM™2(u1,)

and we have

CEI(|x| ze) % ps) = > [ZMM (u,)J 1[!2 2,AMn(u,)

O<s=t \i

ée]é
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(65) =C z 2 (M)

10<s=tATMuyp)

k ~
where uy is the jump measure of >' 2,M(u;) and

C’ = 2% max A7 + (8k*6® max 4})/(e — 2kd max |4;|?).
i i i

By [4, Lemma 2, §2, Ch. 2], the same inequality holds for the compen-
sators of both sides of (65). As the compensator of the right-hand side of (65)
is not greater than

4’ Z ((Vys (x, u)— 1)21(”/}’ (X, u;)— 1] =8)*vzn, pro)es Ty

which in turn tends to zero in P3-probability as n— < by condition (I).
To prove (64) we note that

(66) <2i_ﬁl AIn(u)), = 4 ﬁ ,2 ARG, Kin(u,)),

According to condition (II) and the relation

2 (), M(u;)),— Hi(w;, 0) — HR(u;, 0) + Hi(uy u )™ 0
which will be proved later, (64) follows from (66).
It remains only to prove that for all fixed u, ve U3 and O<t=T

(67)  2Mn(u), M)~ Hiu, 0)— H}(v,0) + Hy(u,1)E=2 ~0.

To this end, fork = 1, 2, ... and u€ U3 we introduce other stopping times

Tp(u) = inf {t=0: £H(u, 0)=1/k} and T(u) = inf {t=0:{}(u)=1/k}, with
inf {#} = .

We set
= Tp(u) A TRV) A THu) A TE) A THO).
By the contigu1ty (P3, 1) Q(P34c;u, 1) and (P3 1) < (P34, ) We have

(67a) lim lim P3(o}=T) =

K-+ oo N—+ oo

Hence, it is sufficient to prove (67) with fAof in place of t. Then,
by (44a), in (67) we can substitute Bf (4, O) and Bfy.n, (v, 0) for
HEyon (1, 0), Hiyon (v, 0), respectively.
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We also consider the Hellinger process H"(u, v) =(ﬁ?(u, V), Ff)t=0 cor-
responding to P3, !y, P54c;1v, and F? and built with the help of the mea-
sure »". Then, by [10, Proposition 3.6] we have for every 0<t=T

ﬁlnf\ ank(u’ V) = G?A onk(u, v) +BtnA cnk(uy v)
where

_ . _ -
Gr(u, v) = [ (@n(w)) =2 o (Cre() —2(L2 ()i () 2 o

(68) o (Tre(u), Te(v)) + (T2() % o (E )]
(69)  Di(u,v) = comp.o( | 2 (V)i (w) -V EWE_())),

and ¢™(u), £7(v) are defined by (61), comp,n denotes the operation of taking
the compensator with respect to (F?, »™).

By virtue of [10, Theorem 2.13] H"(u, v) = H"(u, v), (Pfyetu+
+ P3c1v)[2—as., and, hence, by the contiguity (P3 1) < (P8+c;lu, ) W
have

— P"o
(70) Hyon, (1, v) — Hfy on (1, v) —0.

So, in (67) we can substitute Hfyn, (4, v) for Hfyon, (4, v).
Furthermore, it is clear that

(Mn(u), M)y = (Mre(u), Mre(v)) + (Mr(u), M4(v))

where Mnd(u) = Mn(u)— Mne(u), and from (7) B"(u, 0) = G"(u, 0) + D"(u, 0)
where G"(u, 0) is defined by (68) substituting ¢"(u, 0) and (2—¢"(u, 0)) for
£n(u) and ¢n(v), respectively, and

(71) D2u, 0) = comp png( 0<Zs'§.(l —Val(u, 0))2),

with «2(u, 0) = ZYu, 0)/Z%-(u, 0).
The facts mentioned above yield that (67) is equivalent to

n

(72)  (2(M"e(u), Me(v)) — G™(u, 0) — G(v, 0) + G (i, V)t o1, —+0,
(73)  (2(Mné(u), Mr4(v)) — D(u, 0) — D*(v, 0) + D"(u, v))ry o, 750,
Since
2(Mre(u), Mre(v)) = (M"(u)) + (M"e(v)) — (M"e(u) — M™(v)) =
= G"(u, 0) + G"(v, 0) — (M"¢(u) — M"(v)),
to prove (72) we need to show that

(74) ((Mme(u) — Mme(v — G))y™(u, v))e, gnkiﬁo.
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By Lemma 1 P3(_inf £n(0) = 0) = 0 and from (61) we have for0=t=T
O0st=T
and k=1 (P3—a.s.)
(75) anl\ (U, v) = Z?A a"k(u)/al/\ ,ﬂk(v) =
= —Z_tnl\ Gnk(u7 0)/-2?A ank(v’ 0) = anl\ a"k(u) 0)/Zlnl\ onk(v’ 0)

where we put 0/0 = 0, a/0=  for every a=0. Since the processes Z,, n (4, v)

and Z% », (4, 0)/Z7) ;n, (v, 0) have their pathsin D, they are indistinguishable
P3—as..
For every L= 0 we have the analog of (16) (x"*—a.s.)

Crnon (1) = Co(u) exp{ [ln(l + A1) —

O<sstAo

(76) — Uy (In (1 + AH(u)))] + mip(u) —5<m”:k(u)>,+

+ (UL(II’I(I + X/Zri(ll))) * (H‘Cn(u) — Vz.n(u), n"))t A a"k_
— (o1 +X/E () ¥ gy, wreromy )

where m™*(u) = (mp*(u), Ff)i=o0, m™*(u) = (m™*(u)),
tho"y

mpk(u) = [ dey(u)/Ls- (u).

0
Moreover, from (75) we get for (w, s)€[0, o7] (P5—a.s.) that
L+ dmrku) _ B@IG-(0) _ Ziwv) _ ok(n,0)
1 + Am*(v) Enw)/Zn_(v) Zr_(u,v) ag(v, 0)

where we again put 0/0 = 0, a/0 = « for every a=0. Then from the repre-
sentations of the type (16) for Z™(u, 0), Z*(v, 0) and from the representations

of the type (76) for £n(u), ¢"(v) and using the equalities (75) and (77) and
also [11, Theorem 10] we obtain

1 = Po(Z”\a k(ll V) ZgAa k(ll O)/ZMO k(V 0) 0= t<T)

(77

=PY(op = T) + PH(mp*(u) — mpi(v) —
= ((€2(0))7* o (mi(u) — mmk(v), E74(0)) )y n, =
= 2M7§ o, (1) — 2M% o, (), 0=t =T )=

=2P3 (o} =T) + P3(G}u, v) = (Me(u) — M™(v)),, 0=t=T).
From this and (67a) we get (74) and, hence, (72).
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To prove (73) we write, using (71):
2(M™(u), MM(V)yeyon, = 2 comppnﬂ([Mnd(u), Mnd(v)])

tAa"y, =
=2 comp pn,([(V¥3(x, u) — 1) % (uzn— vzn pnp),
(77a) (Vyux, v)— 1) % (ugn — vznypn{,)]),mnk =
= D" o, (1, 0)+ Dfy o, (v, 0)— comp pry( (Vanr(u) -

O<sst Ao k

Vo, or-2 3 ([ (/76 0)- pzn eny(s), dx))-

0<s=fho" Ri\(0)

([ (V26 v) = 1)yzn, oy (), d))
RI\{0}
Note that the sum of products of the compensator jumps in (77a) tends to
zero as n— oo in P3-probability. This fact follows from the Cauchy-Schwarz
inequality and (36). If we set

Aory(wm) = 3 (V a2(u, 0) = Vai(v, 0))%,
O<s= o
(78) f),"A (U, v) = comppno(A"(u, V))troy s
then it remains only to show that
N — pn
(79) Dy, (1, v) = Dfy o, (1, V) —2o0.

For this purpose we set
— = = = — 2
Ay = 3 ,,(1/ sz -V aee-o).
According to Lemma 1, Po( mf C"(O) =0) =0, and by (61), Z2(u, 0) =
= Z1(u, 0)(P5—a.s.) for 0<s< T Hence, for (w, s)€[0, o] we have (P3—a.s.)

AANu,v) = A AX(u, v)cg_(O)/cg‘(O).

Owing to this relation and (69) we have for every bounded predictable
function f that

E3(f o Dr(u, Wron, = E3(f o A", V))ipon, =
= E3((f1(2"(0) > 0)z2(0)/2(0)) o A™(u, v))epon, =
= EXSI(E"(0)=0)¢2(0) o A™(u, V))eron, =
= E2 L2(0)(f o D™(u, v))trom, — ER(f1(£"(0) =0)E™(0) © A™(u, )ty on, =
= Eg(f o 5"(”» v))tAo"k_ EQ(fl(_C"(O) = O)Z'L(O) o Zn(u» V))tA o
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where E3 and E] are the expectations with respect to P3 and »". Hence, for
every bounded predictable function f we get

5(f o (D(u, v) = D(u, v)))eron, =
(80) = E(f1(E*(0) = 0)22(0) 0 AU, V)4 o,

It is easy to see that we can find a predictable function f* such that |f*| =2
and

E3| D}y on (1, v) — Dfy on (1, v) | = EB(f* o (D"(, v)— D™(ut, )ty on, -
Then (80) yields
(81) E3| Dy o, (u, v) — Dy on (1, v) | = ER| f*1(Z7(0) = 0)-

- A L(0) A AU, V) |4 om, = 64kx"(EF on,(0) = 0),
since A ¢1(0)=4, A AXu, v) =8k on (w, s)€ [0, o]
Because of x = (Q2+Q7)/2 = (2P3+ P34zt + Pyczb)/4 and

( mf C (0) = 0) = 0, we get from (81) and the contiguity

gp?f)” u, T) <A (P3,1) and (P3.;%, 7)< (P3,1) the relation (79), and, hence,

Theorem 4 is proved. O

4. A functional limit theorem for the likelihood ratio processes of general
statistical models

Throughout this paragraph we use the notation of 3. We also use the
notation ¢(y)€ @, for the functions ¢(y), y =0, which monotonically decrease
and are integrable on [L, «) for sufficiently large L.

Theorem 5. Let for some T=O0 there exist thesequence (C,),=1, 0<¢C,=
=Cp4qy Co t o asn— o, and the constants «>m,d=0,D=0,c=2, C>0 and
the functton o(|ul), |u|m Hp@-miacd, be such thatO<c =Ch4py Cpt
as n—oe, and for every ucU%s the measure sequences (Po+c—1,, r) and
(P3, 1) are mutually contiguous and

(I) for every e=0, ueUj and 0<t=T
(76 @y~ D 1[V3G @)= 1| =eoan, pmolis, d)) “20,
(IT) for every u,ve U3 and O<t<=T

Hﬂw®+Hﬂw®—Hﬂmwa%%waNWM»
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(LI1) for sufficiently small h=0 and |ul=h
sup sup P3(H%(u, 0)=d|u|*)=D|u|?*,
n €6

(IV) for sufficiently large L=0 and |u| =L
sup P3(Hz(u, 0)=c|in p(lul)[) = C(|u]).

Then the distributions of a separable modification zn a(u), u€ER™, of the
likelihood ratio process Zp(u, 0) (which is contmued if necessary to
the whole of R™ with preservation of the supremum value and the modulus of
continuity ) weakly converge in C(R™, P§) to the distributions of Z(u), ué R™, as
n—oo, i.e.
ZTC(R P_,?ZZT

Remark 4. Let us clarify the assumptions figuring in Theorem 5, Conditi-
ons (I) and (II) provide weak convergence of finite dimensional distributions
of the likelihood ratio process Z2(-, 0) to those of the process Z(-). Con-
dition (I) is nothing else but the “predictable” version of the Lindeberg
condition. Condition (II) is the convergence condition for mutual quadratic
characteristics of martingales generally figuring in martingale limit theorems.
The conditions (I11) and (IV) which also arise in criteria of c,-consistency of

estimators, guarantee the tightness of the distributions of Z"
Remark 5. If mstead of the condition F7 = {f§, 27} we require, that for
every uc Ug Zj(u, 0) —%1 and also for sufficiently small h>0 and |u|=h

V) Q(IVZ{,‘(u,O)—llzdlul")éD[u[“,
then Theorem 5 remains true.

Remark 6. Let %’ = 9+ c;1u’ for some fixed u’€ Uj. Then from Theorem

5 and [5, Theorem 2] we can find the limit distribution of 27 with respect to
the measure Py.

loc
Remark 7. Under local absolute continuity Pj3,; 1,,<<Po+c 1, in place

of the Hellinger process H"(u, v) in the conditions of Theorem 5 we may
write the process B*(u, v) introduced in [16].

Corollary 2. Suppose that the measures P3, #€0, correspond to processes
with independent increments and they are (for simplicity) equivalent. Then ac-
cording to [17] the Hellinger process H™(u, v) is deterministic for every u, ve U3.

If Condition (1) and Condition (I11) with oo in place ofi—”; are satisfied,
and supposing that

111") for sufficiently small h=0 and |u| =h
sup sup H3(u, 0)<d|ule,
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1V’) for sufficiently large L>0 and |u|=L
inf Hj(u, 0)=c|In g(|ul)!,
n

where o, d, ¢ and ¢(-) have the same meaning as in Theorem 5, Theorem 5 re-
mains true.

i Remark 8. Let P3 = ud X u3 X ... X us and (for simplicity) the measures
we and y‘oﬂ,—;u be equivalent for every u€ U3 and 1 =i=n. Then

t .
Hi(u, 0) = Z 92(H:9, ,utl9+c,‘,lu)y t=1,

i=1
where g(-,-) is the Hellinger distance, and according to Theorem 5 we have
a result, analogous to [6, Theorem 1.1, §1, Ch. I1] without the usual but in-
convenient assumption about the differentiability of 1/2;'(11) in mean square.

Proof of Theorem 5. Let us consider the (with respect to u) separable
modification 27 n(u), ue U3, of the likelihood ratio process Z#(u, 0), ue Uj.
First we show that under conditions (IT) and (IV) of Theorem 5 the pro-

cess 2%(11), ue Usp, is continuous P3 — a.s. and, hence, it belongs to the space
C(U3, P3). For this purpose we establish that

(82) Pg(ﬁ sup_| VZ3u) -V 25 (v)| >0) = 0.

-0 ju—v|=

We have
P,,(lnml sup ll/Z (u)— l/Z v)|=0) =
u-— V
(83) —kllm P"[llm 18 sup |]/Zr(u) Y 23(v) | Z_]
=lim hmP,,[ sup “/ZT(U l/Z" W= ]
ko h-+0 lu—v|=

Further, for every L=0

s[ sup |V Z3@) - ﬁ?(—v)hﬂg

lu—v|=

(84) §P3[ sup V25 -V 230 2—]

lu—v|=h, Iu]SL lv|=sL
1
+Po[ ]u]ssli.p—h ZT(u)_ (2k)2] +P,9[vszuLp hZ, \(v)= —_(2k)2 ]

Let us consider the covering of the set {|u! <L} by the balls §;,, 1=i=N,, of
radius h centered at the points u;, such that the number N, of the balls

12 ANNALES — Sectio Computatorica — Tomus VI.
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will be minimal. By S;, 1=i=N,, we denote the balls of radius 2 centered
at the points u;. Then we have

P3[ |u . Lll/ZT(u) VZrw)| = ]
(85) Z Po[ sup_ H/Z;'(u) ]/ Zp(v)| __]
u, V€SJ

By virtue of condmon (IIT) and [23, Theorem 3] we get for |u—v| =4h
and sufficiently small h=0

ES(V Z3() =V Z30))* = 0*(P31c:tu, P31, 1) =
=4d|u—v|*+2(P31u(HpW —u,0) =d|u—v|9) )* =
= (4d +2DV%)|u —v|* = (4d + 2DV%)(4h)*
where o(-,-) is the Hellinger distance between the corresponding measures
Then from [18, Lemma 7.4] we get P"[ sup |]/Z"(u) ][Z%Tl = ]<

u, veS
=C’h* where C’ dependson &, d, D and the dlmjensmnahty m of the paramet-

ric space ©. The above inequality together with (85) implies
6 Pj =
(86) s iR, s V280 - VZ50)] = ]

=C'N,he =C”Lmpe—m

where C” is some positive constant.
From the condifions (I11) and (IV) and [24, Theorems 3,4] we get for suf-
ficiently small h=0 and |u|=h, €0, n=1,

92(1)3, T yP0+cn u, T) <4dlu‘ +2(P0(HT(U 0)>d|ll| )1/2 =
=(4d+2DV%)|u|=,
and also for sufficiently large L and |u|=L, n=1,

h(P3,t, P3ic;iu, T)=o(|ul)?+
+(P3(H7(u, 0y =c| In (|| )| ) }2 = g(|u| )2+ C¥2p(|u])

where h(-,-) is the Hellinger integral for the corresponding measures.
From these inequalities and the proof of [25, Theorem 1] we obtain
that

. 1 r
(87) Po[ |u|s;1?-n Zyu) = W]éC(R) f Y1 g(y)J&=mVedy

(L=h)2
with some constant C(k)=0.
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From (83), (84), (86) and (87) after the operations lim lim lim we get (82).

k-+o L+ h-+0
Now we continue the process Z?(u), ue U3, on all R™ with the preserva-
tion of sup Z%(u) and modulus of continuity. Such a continuation may be

ue UMy

obtained in the following way. We choose some 4, belonging to the interior of
© and consider the rays starting from the point z9 For a given ray 2 we de-
note by #, the intersection point of the boundary 90 of @ with ® and set

Z"(u) to be equal to lim Z%(u,) where u, = ¢ (B —D ) P eRNO, llm ¢, =

k- o

= 9, on the part of this ray which belongs to R™\ U3.
Since the finite dimensional distributions of the processes Z%(u) and
*(u, 0) are equal, from Theorem 4 we get that for every set (u,, ..., 1)

with 4, €U}, I=si=kand k=1
~ A n
(88) (28w, - Zp()T T8 (Zr(wy), - - ZE ()T
where Z(u) is defined by (2). Hence, the finite dimensional distributions
of [/Z (-) weakly converge to the ones of Y Z,(-).

We prove a weak convergence of the distributions of the process ]/Z';( )
to the distributions of YZ,(-) in C(R™, P3). For this purpose we show that
the family of distributions of ]/Z’%(-)is tight. Our proof of tightness will be
similar to [3, p. 522].

For given H=0, §’>0 and L’>0 we consider a subset

K(H, w5 ,7,) ={Z() €C(R™): |Z(0)| =H;  sup |Z(u)—Z()| S,

lu—v|=9, u, véR

0<6<é; sup |Z(u)| =y, L=L"}
luj=L

where w, is a function of 8, w;~0 ad 60, y, is a function of L, y, -0 as
L—oo. According to [6, Theorem 18] a subset K(H, ws, y,) is compact in
C(R™).

We show that for every >0 there are H>0, w; and y, such that

sup PV Z3¢ K(H,ws, yL)) =1
S g 4P"9) .
Because Z7(0) —— Z(0), there is an H =0 such that
sup Py Z3(0)>H)=21

To define ws; we consider the sequence (g,),=,, e,—»O as r—<o. Because of
(84), (86) and (87) we get

lim sup Po( sup WV Zrw) -V Zp)| =€) = 0, v e=0.

12%
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Hence, for every ¢, there is an h,<h,_,, hy = 1, h,+~0 as r—, such that

sup Pi( sup VZiw ~V2ho) | ze) ="

We set ws = ¢, for 8€[h,, 1, h,), r=1,and & = h,.
Further, from (87) we conclude that for every ¢, thereisan L, L >L, _,
Ly=1,L —~ « asr— «, and

sup Po( sup 1/Z" )=¢,) =

3.-2r°

We set v, = ¢, for L€ [L,, L,H), r=zl,and L’ = L,.
The for properly chosen H, w, and y, we have

sup P3(Y/ 24 ¢ K(H, s, 7,)) = sup P3(Y/23(0) > H) +

+sup Z P,,( Sup IVZ" —VZaw)

IIV

i S n 2
+ sup Z Py( s1ip ]/Zy(u) =)= 3 ?

||Ma

I/
yor =

So, the family of distributions of VZ (+)is tight and according to Proho-
rov’s theorem [1, Theorems 6.1, 6.2]

—C(R™, P
l Z[Il‘ _’VZT,

which implies Theorem 5. O

5. Sufficient conditions for the asymptotic normality of maximum
likelihood estimators

Theorem 5 provides an easy way to obtain “predictable” conditions
for the asymptotic normality of maximum likelihood estimators. For this
purpose in Theorem 5 we set N(u) = (u, V,), u€¢R™, 0=t=T, where V =
= (V)= is an m-dimensional Gaussian process with independent increments,
Vo =0, EV,=0, EV,V{ = min(t, s)['(#) and I'(#) is a positive definite
matrix of size mXxm.

We consider the maximum likelihood estimator #7 of the parameter @
built on the observations up to time T=0, i.e.

B = ¢! arg (sup 2%(u))+q9
€U,

where % = o if sup. is not achieved.
ueU"y
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Theorem 6. Suppose that the conditions of Theorem 5 are satisfied by
Ny(u) = (u, V,). Then the distributions of the normalized maximum likelihood

estimators (9% — ®) weakly converge to the normal distribution with parameters
O, (I'"(#))~YT) as n—~ .

Proof. For the given Borel set A we consider the functional
Y(Z) = I(sup Z(u)—sup Z(u)=0)
u€A ue A€

where Z€C(R™) and A¢ is the complement of A. The functional ¥(Z) is con-
tinuous on the set of Z€C(R™) for which the supremum with respect to u is
achieved in a unique point not belonging to the boundary dA of A. In order
to show the uniqueness of the maximum of Z,(u) we calculate U, =
= arg ( sup Zr(u)). Write

Uu€R

l _
(w, vT)—g(u,rw)u) - —;’ [#J‘l(ﬂ)Vr—VTJT(ﬁ)u 1y

A og- 2
tor 1TV |

where I'(8) = J(#)] 7 (#). From this we conclude that the point of maximum
of Z,(u) is unique and

~ 1

ur = ?1"‘1(19)VT.

From [1, Theorem 5.1] and Theorem 5 we get
PHca(#%— 9) 1 A) = EBI(c,(85 — 0) € A) =
= E3¥(Z;) —~E¥(Zr) = P(ir € A)
for every A such that P(ii;€90A) = 0. Theorem 6 is proved. O
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