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(0,2) Interpolation

Abstract. A new method for solving the (0,2) interpolation problem is
presented. It has been shown that if f¢ Lipya, O<a=1, f€Cr[0,1] and r =
= 2, 3, 4, then the method is O(h"—i+=) in f()(x) for all i=0, 1, ..., r, where
h is the maximum step size. In addition, a stability result for such interpola-
tion is also presented.

1. Introduction. In the recent paper [1] by A. Meir and A. Sharma, error
bounds have been developed for (0,2) interpolation of certain functions by
deficient splines. Swartz add Varga in [2] have extended the results of [1]
to a wider class of functions and have indicated that the extended results
are the best possible.

The main results of Swartz and Varga are given in the following theorem.

Theorem 1.1. Let fe C¥[0,1], where 0=k <6, let n be an odd integer, and let
S, be the unique generalized Meir- Sharma interpolation of f in S (cf.[1],
Theorem 7). Then there exists a constant K, independent of f and n such that

Kn**1=ko(D*f; 1/n)=||DI(f = S,)ll-, 0=j= min (k, 4).

In this paper, the values of such constants are completely calculated.
Moreover, the boundary conditions of the Meir-Sharma interpolant of f,

D3(f—S8,)0)=0 and D3f-S,)1)=0
are released.

In the following sections we present our interpolants for each value of
r separately and prove the convergence in this case.
Thus, we begin with the first case when fe C?[0, 1].

2. Case A. In this case fe C%[0, 1] and we consider the partition:
=1

wherefork =0,1,...,n—1,h, = x,,,—x, and h = max h,.
k

0:0 =X<Xy<...<X<Xpp1<...<X,
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Theorem 2.1. Given arbitrary numbers f®(x,), k = 0(1)n—1 and p =
= 0, 2. Then there exists a unique spline S 5(x) such that

@1 Sa@ecio, 1],
(2.2) Sa(x)€m, on each [x,, xk+1], k = 0(1)n—1 and
(23) SD(x) = fPAx,) = = 0(l)n; p =0, 2.
Proof. Let for x,=x=x,,,, k = O(I)n— 1,

1 -
(2.4) Sa(x) = S (%) = fre+ au(x—x) + '2—fk(x — X)%.
Thus, for k = 0(1)n—1, the value
(25) b = [ fimg i

proves Theorem 2.1.
Let w;(h) (i = 2, 3 4) denote the modulus of continuity of f@(x).

Theorem 2.2. Let fc¢ C2[0, 1]. Then for the unique quadratic spline S ,(x)
associated with f and given in Theorem 2.1, we have for all x€ [0, 1],

1S 4(0)—f(X)| = hay(h),
1S4 (00— /()] 5%]1 wy(t) and

|SZE)—F" ()| = wy(h).

Proof. Using (2.4), (2.5) and the Taylor expansion of f(x), it is easy to
prove it. O

3. Case B. In this case fe C3[0, 1] and we consider the partition:
A0 =Xg<Xy<...<X<Xpp1<...<X, =1

where for k = O(1)n—1, h, = x,,,—x, and h = max k,.

k
Theorem 3.1. Given arbitrary numbers fP(x,), k = 0(1)n; p = 0, 2,
then there exists a unique spline S A(x) such that:

3.1) Sa(x)€mg on each [x;, x;,,1], k = 0(1)n—1,

(32)  SA(x)eCOI0, 1], i.e’ both Sa(x) and SK(x) is continuous for all
x€[0, 1], an

(3.3 SP(x,) = fP(x,), k = 0()nand p = 0, 2.
Proof. Let for x,=x=x,,,,k = 0(1)n—1

(3.4) Sa(x) = S(x) = fyta(x—x)+ % Jux—x >+ 3Ll (X — %)%
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Then for all k = 0(1)n—1, the values

44 l ” 1 4
(3.5) a, = [fkﬂ—fk—”szhi—g‘—hif,,“ +-3—'ni/’,‘]hk.
and
(3.6) ¢ = [fhr1— fillhy

prove Theorem 3.1. O

Theorem 3.2. Let fe C2[0, 1]. Then for the unique cubic spline S 5(x) asso-
ciated with f and given in Theorem 3.1, we have for all x¢ [0, 1],

IS2(x) ~ fO@)| =Ky bt (1), i = 0, 1, 2,3,

where Ks'o = %, K3,1 = %., K8,2 =1 and K3.3 = 1.

Proof. The proof is obvious for i = 3, using (3.6).

If i=0, 1 and 2, then we consider the Taylor expansion for x,=x=x,,,,
k = 0(l)n-1,

2 () ” 3)/ +(F)
O 0w = 3T gm0 LI gy

where x, <& <x,,,.
Using the above equation (3.7) with (3.4), (3.5) and (3.6) it will be easy
to complete the proof. O

4. Case C. In this case fe C4[0, 1] and we consider the partition:

A0 =Xg<Xy<...<Xy<Xpp1<...<X, =1

where x,,,—x, = hand k = 0()n—1.

Theorem4.1. Given arbitrary numbers fP(x,) = fiP, k = 0(1)n; p =
= 0, 2. Then, there exists a unique spline S ,(x) such that

4.1) Sa(x)€m, on each [x,, x4, k=0,1, ..., n—1,
(4.2) Sa(x)eCce[o, 1],
43) $P(x,) = fP(x,) = fiP, k = 0(I)n; p = 0, 2,
So(X), Xo=x=Xx,,
S x) = 0 0 1
(4.4) A( ) {Sk(X), xk§X§xk+1, k = l(l)n—'],

where
1 . 1 1
(4.5) Sp(x)=fi+a(x—x)+ o T(x—x,)%+ 31 (X —x,)3 + de(x —X)4

(4.6) dy = [fira—2fk+ FrsliM2, k= 1(Dn—1.
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and
@AT) Sox) = fot al(x—xo>+%ﬂ;(x—xo)2+% (x—x)* + %(x—xov.

Proof. Using (4.2), (4.3) and (4.5), then we easily get,

»” ’” 1
(4.8) Cp = [fk+1—fk—5h2dk]/h and
4.9) a, = [fk+1—fk'—ihzf:_—hick _—’idk]/h,
2 3! 4]

and this determines uniquely S,(x) and Sy(x).
Hence the proposition of Theorem 4.1. O

Theorem 4.2. Let f€ C4[0, 1). Then for the unique spline Sa(x) given in
Theorem 4.1, we have for all x€[0,1], k = 1(I)n—1

(4.10) |ISD(x) = fO(x)| = Ky it~ 2o0,(h), i = O(1)4
and for all x € [x,, x,],
(4.11) S|8(0) — FO() | = Ka, ht~'eo (), i = O(1)4,

Where K4’o = 3/8, K‘,l = 13/16, K,;’z = 3/2, K4'3 = 9/4, K4,4 = 3/2,
K, = 5/12, K}, = 47/48, K}, = 2, K*, = 13/4, K%, = 5/2.

Before proving this theorem, we state and prove some lemmas which
will help us in arriving at the proof.

Lemma 4.1. For d, given in (4.6), we have
|dy— S®(x)| = (3/2)w,(h)
which holds for all x€ [x,, x,,,] and all k = 1(1)n—1.

Proof. Using (4.6), the Taylor expansion of J¥+, and f and the defini-
tion of the modulus of continuity, we can easily prove this lemma. O

Lemma 4.2. For ¢, given in (4.8), we have

3
|ex— FO(x,) | = Zha&(h)
which holds for all k = 1(1) n—1.

Proof. Using (4.8), the Taylor expansion of f;’,, and Lemma 4.1, it
will be easy to prove it. O

Lemma 4.3. For a, given in (4.9), the inequality

, 9
lak—f(xk)|52(4!)
holds for all k = 1(1)n—1.

h3w,(h).
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Proof. Using (4.9) with the help of Lemma 4.1 and Lemma 4.2, we can
easily complete the proof. O

Proof of Theorem 4.2. We have for all x€ [x,, x,,,] and all k = 1(I)n—1,
the Taylor expansion,

(@12) £00)= SO~ D6 3)00+ G S5,

where x, <t <x,,,andi =0, 1,2, 3.

Using (4.5), (4.6), (4.8) and (4.9) with the help of Lemmas 4.1—4.3.
we can complete the proof of this theorem for k = 1(1)n—1andi =0, 1, 2, 3.

If i = 4, then we get the situation of Lemma 4.1 for all k = 1(I)n—1.
Hence the proposition (4.10).

For x€[x,, x;], we use similar technique and we easily can prove (4.11).
Thus the proof of Theorem 4.2 is complete. O

5. Stability. We conclude this note with a stability result concerning the

case C, when fe C4[0, 1] while it is easy to prove similar stability results for
the other two cases when f€ C? and C3.

Theorem 5.1. Let fc C4[0, 1] and let S A(x) be the unique spline constructed
in the same manner as that of Theorem 4.1 and satisfying the following data :

(.1) Salx) = o k = 0(1)n,
(6-2) S'a(t) = Be k = 0(1)n
where we suppose that there exists a function F(f, h) such that :
(5.3) wy() IF(f, hy=max| f(x) —a

and

(-4 wy(h) B*F(f, hyZ=max| f*(x,) = Bl

Then there exist constants K, and K, independent of F, f and h such that
the inequality

ID(f = Sa)ll = h~ (WKF + K]
holds for all i = O(1)4, where ||-||l. = |- llL[0, 13-

Proof. The unique spline polynomial S, (x) can be easily constructed in
the form:

(5.5) §A(x) — {So(x), Xg=X=X,

where

Su(X), X, =x=X4,, k=1(1)n-1,

(5.6) S—o(x) = g+ a;(X—Xo) + %ﬂo(x — X2+ % G(x—x0)* + % 31(" —Xo)%,
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(51) Ble) = et Bux =)+ Bulx — R+ x5+ L By(r— 5"

(5.8) Gy = [Besr—2B,+Bea %, K = 1(Dn—1,

(5.9) G = By Bu= o G, k= 1(Dn—1

and

(5:10) 8, = [spss= sy 1y — 5 Eu= 3l k= 1(Dn—1.

We prove this theorem for S,(x) only where k = 1(1)n— 1 while it is easy
to prove it for Sy(x).

For this reason, we use (5.7)—(5.10) and (4.5)—(4.9) and we easily
get:

(5.11) |@, — a,| = (62/24)h3w,(h)F,
(5.12) | — €| = hoy(R)F

and

(5.13) |d,—d,| =4w,(h)F.

We also have, for all x,=x=x,,, and k = 1(I)n—1,
| F(x) = Si(x)| = 17(x) = $i(3)| + | Si(x) = Si(x)| =

1.,
= | f(x) = Sk()| + | fi—ox| + h|a—a,] +Eh2|f;‘ — Bl +

h3 - h4 -
+§ lex—ci| + Z!“|dk—dk(~

Using Theorem 4.2, (5.3), (5.4), (5.11), (5.12) and (5.13) we easily get

(5.14) /()= S,(0)| = h‘w.,(h)[—F + ]
Similarly, we can get the following results for the derivatives:
, < 19
(5.15) |£/(x) = Su(x)| = how,(h) [?F
7} —_n 3
(5.16) | f7(x) — S(x)| = h2w4(h)[ 4F + 7]’

(5.17) | f®(x) — S8 ()| §hco‘(h)[ 5F + %],
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and
(4.18) | f®(x) - S ()| §m4(h)[ 4F+%]_

Hence the proposition of Theorem 5.1. O
We used the following example to test the method and we got the fol-
lowing results.

Example. We considered f(x) = 1+xe*, x€[0, 1], x, = kh, k = 0(1)10
and h = 0.1. The results are given for x = 0.86:

The function Numerical values Exact values The error
Case A) feC*[0,1]:
f 3.032880959 3.032318197 5.627600E — 4
il 4.394415716 4.395478890 1.063170E -3
¥ il 6.23154600 6.758639584 5.2T1249E -1
)
Case B) feC? [0,1]:
3.032304099 3.032318197 1.409800E -5
’ 4.395617486 4.395478890 1.385960E —4
Jidd 6.772315150 6.758639584 1.367567E -2
J i) 9.013344220 9.121800278 1.084561E —1
Case C) feC4 [0,1]:
f 3.032317366 3.032318197 8.300000E -7
il 4.395485583 4.395478890 6.693000E —6
bisd 6.759480996 6.758639584 8.414120E —4
J® 9.120296352 9.121800278 1.503926E —3
J® 10.69521320 11.48496097 7.897478E -1
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