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The analysis and synthesis of discrete dynamic systems require know-
ledge of interdependences between structural properties of systems and pro-
cesses generated by the systems. To study these interdependences it is con-
venient to specify both systems and processes in terms of the same formalism —
in particular, in terms of nets. Such an approach has been initiated by Petri’s
paper [1] and further developed in a chain of works [2, 3, 4, 5] which formally
define parallel processes and some related characteristic properties of nets
specifying the processes. This paper continues the chain. Its aim is to genera-
lize the notion of process allowing it to contain alternative actions which
mutually exclude each other. The structural properties of nets specifying
such generalized parallel (and sequential) processes with alternatives are
studied.

1. We assume that an abstract system consists of events, conditions and
dynamic relations between these system elements. The system can generate
(abstract) processes which consist of process elements called actions (event
occurrences) and condition changes and relations between the elements. In
“traditional” definitions of a concurrent process it is assumed that each pro-
cess element (action or condition change) is unique and occurs in the process
exactly once. In our generalization of a process we allow it to contain ele-
ments which, though listed as process elements, can occur or can be omitted
(in favour of other, alternative elements).

The type of a process is defined by the type of relations which can occur
between the process elements. All these relations are derivatives of a basic
relation <: x<y can be interpreted as “if both x and y occurs in a process
then x occurs earlier than y”.

Thus, a process is a pair (X, R), where X is a set of elements, R is a finite

set of relations in X. Any pair of distinct elements of X belongs precisely to
one of the relations of R.
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A process (X, R) is sequential iff all its elements occur and R = {li},
where [i is a relation of succession:

xliyex<yVy<x)V(x =y).

A process is concurrent iff all its elements occur and R = {li, co}, where
co is a relation of concurrency :

xcoye(T(x<y)A T@<X))V(x = y).

A process is sequential-alternative iff R = {li, al}, where al is a relation of
alternative:

x al y<(x occurs = y is omitted) A (y occurs =x is omitted).

A process is concurrent-alternative iff R = {li, co, al}, where the relations
li, co, al are defined as above.

2. A net is a triple (P, T, F) where P is a non-empty set of places, T is
a non-empty set of fransitions and FEPX TUT X P is an incidence relation.
The following conditions are valid for the nets (X = PUT is a set of all
net elements: transitions and places):

Al. PNT = 0.

A2. (F=P)A(Vx€X, vyeX:xFyV yFx), i.e. every element is incidental
to at least one element of another type.

A3. Y Py, PP (P = Py NPy =" P))=DP1 = Py

where

x = {y|yFx} is a set of input elements for x,
x* = {y|xFy} is a set of output elements for x.

A Petrinetis N = (P, T, F, M,) where (P, T, F) is a finite net (X is fi-
nite) and M, : P—~{0, 1, 2, ...} is an initial marking.

We omit well-known definitions of transition firings, firings sequences,
reachable markings, etc. One can find these definitions in [6] or other books
and papers on Petri nets.

In a Petri net, modelling discrete system, transitions correspond to sys-
tem events and places correspond to conditions.

3. Now we introduce nets which will serve as syntactical forms of pro-
cesses. In a Petri net, specifying a process, transitions correspond to process
actions and places correspond to condition changed.

The following additional restrictions will be general for all types of nets
representing processes considered below.

Let H(N) = {p|p€P A\-p = 0} be a set of head places of net N, G(N) =
= {p|peP A p- = 0} be a set of tail places of N.

An ordered sequence of net elements x,, x,, ... is called a path D(x,)
from x,, if Vi=1:x,Fx,;,,, and is called an inverse path D-(x,), if vi=1,
x;F~1x;4,. A finite (inverse) path (x, ..., y) is called an (inverse) segment
and denoted by D(x, ) (D-(x, ¥)).
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Ad. VYx,yeX:(x=y AxFty)= 1 (yF *x), i.e. the net contains no loops.
A5. (H(N)=8) A (¥ x€X, ¥V D-(x): D-1(x) is finite).

This restriction demands that any net representing a process should
have a non-emtpy set of head places and shoul not contain infinite inverse
paths.

A6. VteT: (‘t=0 At =0),i.e any transition has at least one input and one
output place.

1, if peH(N),

YpeP: M =
A7 P oP) {O, otherwise.

The process nets have standard initial marking: each head place contains
one token, other places have no tokens.
Occurrence nets [1] (or O-nets) representing concurrent processes are
nets (with a standard marking) which in addition to the conditions A7 — A7
will satisfy the following restrictions:

A8. VY peP:(I'p|=1A|p|=1), i.e. every net place has only one input or
output transition; all the places which do not belong to the set of head places
or the set of tail places have one input and one output transition.

In the general case O-nets can be infinite. Any O-net is safe because of
standard initial marking and restrictions upon the net topology, specified
by conditions A4, A5 and A8. An example of an O-net is shown in Figure 1.

This definition of occurrence net is a particular case of a more general
definition given in [1] because of restrictions A5 and A6.

Now we introduce nets for describing processes with alternative. A se-
quential-alternative net (or S-net) satisfies, in addition to A7 — A7, the follo-
wing restrictions:

A9. |H(N)| = 1, i.e. the net has only one head place.
A10. VvteT: (|'t] = 1) A(|t] = 1), i.e. any transition in the net has only
one input and one output place.

oS E
O i

Fig. 1.
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It also follows from the conditions A9— A70 that S-nets are safe and
they represent a connected graph. An example of an S-net is shown in Figu-
re 2.

b f A
> — O
d e
R s

Fig. 2.

We will present concurrent-alternative processes with the help of
acyclic nets, or A-nets, which satisfy axioms A7— A7 and on additional res-
triction A77 guaranteeing the safeness of A-nets. The formal definition of
the condition A77 will be given below. An A-net transition can have more
than one input and one output place and a place in its turn can be incidental
to several transitions, An example of an A-net is shown in Figure 3. Note
that O-nets and S-nets form particular subclasses of A-nets.

H d

Fig. 3.
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4. All the relations defined here for process net elements are introduced
with the help of the basic relation precedence which is denoted by symbol <
and is defined for an arbitrary O-net N in the following way:

VX, YEX: (x<y)=(x#=y) NXF*y,

i.e. element x is previous to element y (x<y), if x differs from y and there is a
segment D(x, y) in N. The relation of succession li in the O-net is defined as
follows:

VX, yeX  xliye(x<y)V(x = y)V (¥ =<x),

i.e. two elements x and y are in relation of succession iff they are equal or one
of them precedes the other.

The relation of concurrency co for the O-net elements is defined in the
following way :

xcoye 1(xLy)V(x =y),

i.e. two elements are concurrent, iff they are equal or they are not bounded by
the relation of succession. For example, Figure 1 shows p;<p,, a co b, ¢ li p,.
Due to the reflexivity of the relations /i and co any element precedes itself
and is concurrent with itself.

A set L X will be called a li-section, iff

(1) vx,yeL:xliy;
(2) vyeX\L, 3xeL: 1 (xliy).

A set of C< X will be called co-section iff

(1) vx,yeC:xcoy;
(2) vyeX\C, 3x€C:1(xcoy).

Figure 1 shows a net with {p,, a, p,, ¢, ps} as a li-section, and {a, b} as
a co-section.

As proposed by Petri [1] the property of K-density for O-nets is a pro-
perty which characterizes their adequacy as net description of concurrent
processes.

An O-net is called K-dense, iff the intersection of any li-section and any
co-section in the net contains exactly one element. The O-net shown in Figure
1 is K-dense; the O-net in Figure 4 is not K-dense, since the intersection of li-
section {p,, a, p,, a,, ...} and co-section {b,, b,, by, ...} is empty.

5. Sequential-alternative nets of S-nets are used when describing se-
quential-alternative processes. The precedence relation and the relation of
succession /i are defined in the same way as in the case of O-nets. The alter-
native relation al for S-net elements is defined in the following way:

vx,yeX,xalye 1 xliy)V(x =),

i.e. the elements x and y of an S-net are alternative iff they are equal or are
not successive.
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Fig. 4.

The definition of a li-section fully coincides with that of a li-section for
O-nets.

The set A< X is called an al-section iff

I. vx,y€cA:xaly;
2. VyeX\A, JxcA: (x aly).

Figure 2 shows an exarmnple of an S-net in which the set {p,, b, p,, €, p,}
is a li-section, {d, e, f} is an al-section.

It follows immediately from the definitions of li- and al-sections that the
intersection of any of the li- section and al-section of an S-net contains at
most one element.

Similarly to the case of O-nets there arises the problem of S-net ade-
quacy. If intepreted as descriptions of sequential-alternative processes they

1
p13 P 4d p3a
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can be unacceptable as specifications of real “reasonable” processes. Among
O-nets there exist K-dense O-nets which represent reasonable concurrent
processes. For the same purposes the property of L-density is introduced for
S-nets. The latter is defined in the following way: an S-net is L-dense, iff
the intersection of any li- al- section pair contains at least one element. The
S-net in Figure 2 is L-dense whereas the S-net in Figure 5 is not because its

infinite li-section {p,, a,, p,, a,, . . .} does not intersect with the infinite al-
section {b;, by, bs, ...}.

6. We will present concurrent-alternative processes by means of acyclic
nets (or A-nets) introduced in Section 3.

It is impossible to define the alternative relation for places and transiti-
ons in a topologically uniform way since the natures of condition change and
action are different. The condition may be changed if at least one input action
occurs, i.e. the place will get a token if at least one its transition fires. The
action occurs if all its input conditions have changed, i.e. the transition can
fire if all its input places have got tokens.

Two transitions ¢, and f, of A-net are alternative iff

t, al tz‘”((’t1 N l#B)V(Ipr€-t(VHeEDp: 1 al tz)) \%
V(3p€to( V€ Py ty al )N (4 L 1),
Two places p, and p, are alternative iff

Pral pye(py# o) A (V L€ Py, ¥ L€ Pyt alty).
The place p and the transition t are alternative iff

palte(vtep:talty\ T1(tlip).

Two A-net elements x and y are concurrent iff they are not connected by
the relations of succession and alternative:

xcoyex=y)V 1(xliyvxaly).

For example, in the net shown in Figure 3 p, co p,, b al d, and p, li f.
The class of acyclic nets is defined by means of above-mentioned
conditions A7— A7 and the following restriction

A11. Y peP, Vi, LET : (t, L, pV t,=t,)=>t al t,.

If the relations li, co, al are considered as ‘“‘coordinate axes” of some
three-dimensional space, then O-nets are in a plane formed by the axes li
and co (there are no alternative elements). Structural restrictions for O-nets,
which guarantee an adequate net representation of processes were formulated
by means of the notions /i- and co-sections (all of them have to intersect
pairwise). Similarly, to represent sequential-alternative processes adequately
it was required that all the li- and al-sections should intersect pairwise. For
A-nets adequately formalizing concurrent-alternative processes the follo-
wing requirements should be satisfied. First, K-density and L-density of its
subnets, introduced below, and, second, another property, M-density, for-

7 'ANNALES — Sectio Computatorica — Tomus VI.
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mulated in terms of the intersection of planes formed on the one hand, by
li- and co-sections and, on other hand, by li- and al-sections.

The net N’ = (P’, T’, F’) is called a subnet of the net N = (P, T, F)
iff PPCP, T'CT, FCFUP'XT'UT’ X P’).

Remark. While defining a subnet we do not require it to satisfy condi-
tion A3; being different in the source net, places in a subnet may have the
same set of incidental transitions. It is important however to remember that
in the source net they were incidental to different transition sets.

A net N’ is called an O-subnet of the A-net N, iff

1. N’is a subnet of N,

2. N’ is O-net,

3. VT : {peP|pFt}c P’ and Y peP’: F'(p, t) = F(p, 1),
i.e. transition £ in the O-subnet N’ has the same set of input places and the
same arcs connecting it with these places as in the A-net N.

We will call an O-subnet N’ of a net N maximal iff

1. for any O-subnet N”” of N we have N”C N’;
2. all the head places of N’ are head places of N, i.e. H(N")S H(N).

The set of maximal O-subnets forms the set of all concurrent processes,
generated by an A-net. The O-net shown in Figure 1 is a maximal O-subnet
of the A-net shown in Figure 3.

A N’-net is called an S-subnet of an A-net N, iff

1. N’ is a subnet of N;

2. N’ is an S-net;

3. VpeP {{|tFp}c=T’, vteT : F'(t, p) = F(t, p), i.e. any place p in
N’ has the same set of input transitions and the same arcs connecting it with
these places as in the net N.

An S-subnet N’ of an A-net N will be called a maximal S-subnet iff

1. for any S-subnet N” of N we have N” S N’;
2. the head place H(N’) belongs to the set H(N) of head places of N.

Remark. This definition of an S-subnet is valid for A-nets which can be
represented as superpositions of S-nets, where the superposition operation
“" is defined as follows:

Let N, = (P, Ty, F;) be Ny, = (Py, T,, F,), then N = (N, N,) =
= (P,UP,, T,UT,, F{UF,).

In the general case item 3 in the definition of S-subnets is recorded so-
mewhat differently.

The S-net shown in Figure 2 is a maximal S-subnet of the A-net shown in
Figure 3.

We will call an A-net K-dense, iff all its maximal O-subnets are K-dense,
and an A-net will be called L-dense iff all its maximal S-subnets are L-dense.

We will call an A-net N M-dense iff the intersection of any maximal S-
subnet of N with any maximal O-subnet of net N results in some (unique)
li-section of a net N.
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The A-net shown in Figure 3 is not M-dense for the intersection of its
maximal O-subnet shown in Figure 1 with the maximal S-subnet in Figure 2
results in the set L = {p,, a, p,} which is not a li-section of the A-net. The
A-net shown in Figure 6 is neither K-, nor L-, nor M-dense.

The following assertion illustrates the adequacy of A-nets as net rep-
resentations of concurrent-alternative processes.

Fig. 6.

We will call a net correct iff for any reachable dead marking M (i.e. none
of the net transitions can fire at M) and for any place p not belonging to the
set of tail places, M(p) = 0. Note that in the general case there can be infi-
nite A-nets without tail places and respectively without dead markings. In
these cases they are considered to be correct.

Theorem 1. Any S-net and any O-net are correct.
Theorem 2. Any M-dense net is correct.

7. After we have introduced some properties characterizing adequate
net interpretations of generalized processes, we want to extend these pro-
perties to the case of Petri nets generating these processes. In such a way we
distinguish adequate nets modelling “‘reasonable” systems. For this purpose
we should establish some correspondence between Petri nets and A-nets
describing their functioning. Also, we would like to find one-to-one corres-
pondence, — to assign to any Petri net a unique generalized process descri-
bing its functioning (unfolded process net). First of all, note that we can
assign to any acyclic Petri net without loops and with standard initial mar-
kings (each head place and only a head place possesses one token), a net-

T*
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process which is identical with this net. For example, the net shown in Figure
7b generates an occurrence net shown in Figure 4; the net shown in Figure 7a
generates an S-net shown in Figure 5; the net shown in Figure 7¢ generates
an A-net shown in Figure 6.

qQ, b, C
a 3 Q b d C

P P P r

Fig. 7.

Several of the following relations demonstrate the correspondence bet-
ween a Petri net N and its unfolded process net N.

1. Let pr-* denote a mapping reverse to the unfolding transformation,
i.e. pr-1: N—N. Then for any transitionte T, pr=3(t)=(pr-X(t); pr-(f)=
=(pr-i).

2. If x<yin N, then pr-}(x)<pr-'(y)in N.

3. L(N) = L(N, X)) where L(N) is the free language of the Petri net N,
L(N, X) is the language of the labelled net N in which v thieT : Z(thj) =
= t, and (i, j) are indices obtained by the transition ¢ from N with unfolding
into A-net N.

The net which generates a unique net-process is dense (K-dense, L-dense,
M-dense) iff this process is dense (K-dense, L-dense, M-dense).

We will introduce now some additional notions and definitions.

Let a simple path in a net be a sequence of net elements (x;, x,, ..., X))
such that x;Fx,, for all i, 1<i=n, and x;>x; for any two elements except
that x, = x,, allowed. A simple path is a loop iff x; = x,,.

A place p is a loop exit iff there is a transition in the loop such that pet
and there is no loop which contains both p and ¢.

Theorem 3. A Petri net N is non-K-dense iff in N there exists an unboun-
ded loop exit p.

This result is similar to that of Reisig and Goltz [8], for the place p can
be primarily unbounded for two reasons:

1. the place p is an output place of a transition which can fire for an in-
finitely long time because of the initial marking (in [8] this is a transition
without any input places) or
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2. the place p is an output place of a transition from some loop in
which this transition can fire for an infinitely long time, and the place p does
not belong to this loop.

Unboundness of the first type is not related to K-density, while the
second case characterizes the connection between K-density and the un-
boundness of a place.

Theorem 4. If a state-machine net is not L-dense then it is not fair [7].
The proofs of the theorems stated above will be presented elsewhere.
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