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1. The notion of interval filling sequence has been introduced in the
paper [4]. Let 4 denote the set of those real sequences {4}, for which

In>2piy >0 (n€N) and L: = 32, < oo

n=1

Definition 1.1. We call the sequence {4, }€ A interval filling, if for any
x€[0, L] there exists a sequence ¢,€{0, 1} (n€N) so that

(1.1) X = Zenzm
n=1

In [4] we have proved the following
Theorem 1.1. The sequence {,}€ A is interval filling if and only if

A= 2 A
i=n+1

for any neN.

In this paper we investigate certain classes of interval filling sequences,
in order to clarify the finer structure of the representations (1.1).

2. We shall need the following definitions:

Definition 2.1. Let {4,}c A be a fixed sequence and k€N. We shall call
the number x€[0, L] k-decomposable if for any x,€[0, L] (i =1, 2, ..., k)
k

satisfying x = >'x; there exist sequences e,(i)€{0, 1} (neN,i = 1,2, ..., k)
i=1
so that

(2.1) Xi=> ety (i=1,2,...,k

n=1

and é e,(i)€{0,1} (neN).
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Definition 2.2. Let {4,}c4 and k€N fixed. We call the sequence inferval
filling of order k if any x€ [0, L] is k-decomposable.

Remarks. (i) If the sequence {A,}€4 is interval filling of order k=2,
then it is also interval filling of order (k—1). As a matter of fact, if any
x€[0, L]is k-decomposable then choosing the numbers x,€[0, L] (i = 1, 2,.

., k) so as to have x —Z x; and x, := 0 we obtain that x is (k—I)-de-

composable.

(i) Clearly, the sequence {4,}€ 4 is interval filling of the first order iff it
is interval filling in the sense of Definition 1.1.

Theorem 2.1. The sequence {A,}€ A is interval filling of order k, if and
only if
(2.2) ki,= 2> A4

i=n+1

holds for any neN.

Proof. (i) Let {A,}€ A4 be interval filling of order k (for a fixed k€N), and
suppose that in contradiction to our statement (2.2) does not hold for some
neN, i.e. that

K> > 4,
j=n+1
Then there exist numbers x,, x,, . .., x,_, and xk such that

(2.3) L ij<x,<mm{ 2 }

k j=n+1
fori =1, 2, , k—1 and

eo Bt 3 wen=min{3n S 5]

1 n+1 j=1 =1
Now x1+x2+ .+x,<L and by (2.3) the values 4,, 4,, ..., 4, cannot occur
in the representatlon (2.1) of the numbers Xy Xgy v ey Xy (1 e. g(i) = 0 for
Jj=12,...,nandi =1, 2, —1). On the other hand, in v1ew of (2.4)

the representatlon (2.1) of X cannot contain all the values Ay Ay ooy Ay
so that

X +X+ .. X = lej
j=n
follows. If we still add the left-hand sides of the inequalities (2.3) and (2.4),
we get

X +X+ ... +x,,>j§2.j
X j;n
a contradiction. Thus the number x := >'x, is not k-decomposable.
i=1
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(ii) Let us suppose that the sequence {4,}€ A satisfies the inequalities
(2.2). Let moreover x;€[0, L] (i =1, 2, ..., k) be arbitrary numbers for
k

which >'x,=L.
i=1

We now define the numbers ¢,(i) (n€N, i = 1, 2, ..., k) inductively as
follows:

n-1

S e+ Ay =x,,

=1
0 otherwise.

]l if e,(j) = 0 for j<i and

en(i) = l

k
It is clear from the definition that e, (i) €{0,1} (n€N) and
n=1

(2.5) n};;le,,(i)z,,éx,. (=12 ...,k

We are going to show that in (2.5) equality holds. We distinguish three
cases:

k
(a) >en(i) =1 for every neN.
i=1

If, for some i€{l, 2, ..., k}, strict inequality would hold in (2.5), then con-
dition (a) would imply

L= <X +Xp+...+X
1

n=

in contradiction to the choice of the numbers x;.
(b) There exist finitely many values n€N for which

Zkle,,(i) = 0.

Let us show that this is impossible. Indeed, suppose that (b) is valid, and let
k
N be the greatest natural number for which >'en(i) = 0. Then

i=1

N-1

Z sl(i)ll_i_)'N >x,
I=1
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fori = 1,2, ..., kand from this

3 5a0n =33 e+ 3 4

i=1 l= I=N+1
k (N- .
;Z[Z s,(z)).,+zN]>x1+x2+...+xk

follows, a contradiction.
(c) There exist infinitely many values n€N for which

K
> en(i) = 0.

i=1
For these values of n
n-1 .
xi< 2 e+ 4,
i=1

and if n— - then by A, -0 this implies
X, = D g
=1

i.e. in (2.5) equality holds. O
Remark. For k = 1 Theorem 2.1 is clearly equivalent with Theorem 1.1.
Examples. (1) Let 1 <g=2. Then the sequence 4,: = 1 belongs to .

qn

Proposition. The sequence {—l—}eA is interval filling of order k if and
qn

only if

Proof. In view of Theorem 2.1 we must investigate, when will the ine-

quality

be satisfied for any neN: (2.6) immediately follows. O
(2) Let N¢N be fixed, and consider the sequence

1
N, _ — 1 (ncN).
"7 (N+n)? (neN)
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Proposition. For any keN there exists N(k)€N so that the sequence
(AN®Ne A is interval filling of order k.

Proof. In view of Theorem 2.1 it suffices to show that for k€N fixed
k = i 1 -
(N+n)?  im (N+10)?

holds for any n¢N, if only N is large enough. An investigation of the function
2

X shows that for any k€N there exists such an x, that x> x, implies

x+1
x’—c:l >k. Choosing N = N(k)>x, we now infer that
N+m?®
N+n+1
i.e.
k 1

<<
(N+n)? N+n+l1
holds for any n€N. From this

k 1 1 1 I
- + ~ ...
(N+m? Ntntl Ntnt2 N+nt2 N+n+3

= 1 - 1
1=n2+1 (N+i)(N+i+ 1)'f=§1 (N+i)?
i.e. {A™} is interval filling of order k. O

3. Let {4,}€ 4 be an interval filling sequence.

Definition 3.1. The function F :[0, L]-R is said to be completely addi-
tive if for any sequence ¢,€{0, 1} (n€N) the equality

3.1 F[z A] = S e )

holds.

We have investigated completely additive functions in the papers [3] and
[4]. A more general form of the following theorem can be found in [4], but the
method of proof is quite different.

Theorem 3.1. If {4,}€ 4 is an interval filling sequence of second order and
F: [0, L]-R is completely additive, then there exists c€R so that F(x) = cx
for any x€[0, L].
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Proof. (i) Let P: ={n|F(2,)>0} and M: = N—P. Putting ¢: = 3 A,
nep
we see by (3.1) that

S F()| = 3P0~ 3, FGo) = FQ = F(L=8)= =,

n=1 nemMm

hence F is bounded in [0, L].
(ii) Let x, y=0 and x+y=L be arbitrary. Then there exist sequences
&p 0,€{0, 1} such that e,+6,€{0, 1} (n€N) and

xX= Z enlm y= nzzlan)'n'

n=1

By the complete additivity

F(x+}’) = F[ i (8n+ 6"))," = 2 (8n+ 6H)F()'n) —
n=1 n=1
=5 FO0+ 3000 = H{Z e+
n=1 n=1 n=1

+ F[ glanan] = F(x) + F(3).

Now, as is known from [2], there exists an additive function A: R—R (i. e.
A(u+v) = A(u)+ A(v) for any u, veR) such that A(x) = F(x) for x€[0, L].
On the other hand, the boundedness of F implies that A is bounded in [0, L],
and from this A(x) = ex follows (see e.g. [1]), i.e. we have F(x) = ¢x. O

4. The following definitions have also been introduced in [4].

Definition 4.1. Let {1,}€ 4 be an interval filling sequence. The number
x€[0, L] is said to be uniquely determined, if there exists a unique sequence
£,€{0, 1} (n€N) for which (1.1) is satisfied.

Definition 4.2. Let {1 }€ A be an interval filling sequence. The number

xe]O L[ is said to be finite if there exist N¢N and ¢,€{0, 1} (n = 1, 2,
. — 1) such that

N-1
4.1) X = 2 endntAn-
n=1

Remarks. (i) Clearly, 0 and L are always uniquely determined.
(i) If x€[0, L] is finite, then it is not uniquely determined. Indeed, by
Theorem 1.1, Fn': = AN+n (neN) is in this case interval filling and 2,

= 2 A= z u,. Thus there exists a sequence 8,€{0, 1} such that

i=N+1 n=1

Ay = Z Optty, = Z 8- nAp
n=1

i=N+1
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hence
N-1 N-1 o
X = Z en}'n+)‘N = Z Enln'*‘ Z 6[—N)’i7
n=1 n=1 i=N+1

i.e. x is not uniquely determined.

Theorem 4.1. Let {1} € A be an interval filling sequence for which it is true
that any non-finite number from 10, L[ is uniquely determined. Then

Ay = 2k (neN).
2n
Proof. (i) Suppose that there exists an n€N for which
A< i Y

i=n+1

Let us show that in this case there exists a number in ]0, L[ which is neither
finite nor uniquely determined. The finite numbers form a countable set in
]0, L[, so there exists n>0 such that 4+ is non-finite and

}'f‘l + n< z }'i'
i=n+1

Now the non-finite number x = 1,+% has a representation in which A,
occurs, and also such a one in which 4, does not occur. Thus x is neither finite
nor uniquely determined. From this, by Theorem 1.1, we obtain that

}.n = Z )'i
i=n+1
for any neN, hence
In= 2 A =dnyt D A4 =24
i=n+1 i=n+2

By induction we get (4.2).
(ii) On the other hand it is known that the sequence (4.2) satisfies the
hypothesis of the theorem (see e.g. [5]). O

Remark. Theorem 4.1. can be regarded as a characterization of the se-
c
quence ?(C>0).
5. Let 1<¢g=2and 1,:= Ln(nEN). Then{ 1 }EA is an interval filling
q

)
sequence, and we have shown in [4] that for ¢= '/5%1

! l ]is non uniquely determined. By Theorem 4.1 we know

every number

x€ o, L[[L =
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that there always exists an x¢ J0, L[ which is neither finite nor uniquely de-
termined. Also, we have proved in [4] that for V52+ !

~<q=2 there exist

uniquely determined numbers.

Now we are going to investigate the following question: given a sequence
e,€{0, 1} (neN)i.e. given an element e = (gy, &, . . .)€{0, I}N, for which values
1 <¢=2 will the number

(.1) x= i—ge[o,—.

be uniquely determined?

Definition 5.1. Let ec{0, 1} and neN. Denote by E () (E (¢)) the set
of all those real numbers 1<¢ =2 for which there does not exist a 6€{0,1}N
such that é, = ¢, fori<n, é,>¢, (8,<¢,) and

LI S
S1¢ Sg
Let moreover E, (¢):= Ef(e)NE; (¢),

E*(ei= 0 Ef(e) E7(e)i = 0 Eq(e)

n=

and
E():= E*(e)NE-(¢).

Remark. (i) It follows from the definition that for g€ E(¢) the number
(5.1) is uniquely determined. The set E(e) will accordingly be called the uni-
city set of the sequence e€{0, 1}N.

(ii) We have Ef(e) = E (1 —¢) for any neN, where 1 := (1, 1, 1, .. .)€
€{0, 1}N. Thus it often suffices to consider the set E;}(¢).

Theorem 5.1. The relation g€ E}¥ (¢) holds if and only if either

0] e, =1
or else

. i 1
2 e, =0 and =
) " i=n+1 ¢ q"

Proof. (i) Suppose that g¢ Ef(¢) and e, = 0. Then there exists a
6€{0, 1)N such that

o 6[ _ oo 6_[
,-=qu" Zlq"
moreover ¢; = §, for i<n, §, = 1, ¢, = 0 and so
S a1, S5 &1
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(ii) Conversely, if

then

and so by the interval filling property there exists a sequence §,€{0, 1}
(i=n+1) such that

0= S i——l— =3 ﬁ
i=n+1 ¢4 ¢ iZm ¢
Putting 6, = ¢, fori<n, 6, = 1 we now get

o g o O
= —. O
2o &7
Theorem 5.2. Let n€N and €{0, 1}N be fixed. Then there exists q, =
= go(n; €)€[1, 2] such that
E} () = [0 2].
Proof. The condition

&y 1
5.2 —<—
(5-2) :=§1 ¢ q°

occuring in Theorem 5.1 is equivalent to

e 1 i
1@: = 2[—] <1
i=1 q
As sum function of a power series f is continuous, and the coefficients being

nonnegative it is a monotone increasing function of —. Thus there exists

q
go€[1, 2] such that for g<gq, (5.2) is satisfied. O

Theorem 5.1 enables us determine the unicity set E(e) for certain se-
quences e€{0, I}N.

Theorem 5.3. Let ¢€{0, 1}N be defined by

e, = {1 if ne{l, k+1, 2k+1,3k+1, ...}
0 if n¢{l, k+1,2k+1,3k+1, ...}

with k=2 a fixed natural number. Then

(5.4) E(e) = {g€ll, 2)l¢" =g+ 12— ... —g—1=0).

(5.3)
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Proof. For 1 <¢=2 we have

& 1 1 1 gkt
L =—ll+—+—+...|= .
,-Zl ‘ q[ ¢ g* ] -1
By Theorem 5.1
(5.5) E}x() = 11,2]forne{l, k+1,2k+1, ...}

If ne{2, 3, ..., k} and g€ E}(¢) (in case ¢, = 0) then by Theorem 5.1 it is
necessary and sufficient that

1.1 2 ¢ 1 1 1 gt

—=—> — = + o= —
qn qk ik 1 qi qk+1 q2k+1 qk qk_l

should hold. By the periodicity of the sequence ¢ we get

(5.6) EZ(e)2{¢e]l, 2]l¢*—g**—1=0}

forn¢{l,k+1,2k+1, ...};if n = lk (I€N) then equality holds in (5.6). From
equations (5.5) and (5.6) we obtain

(5.7) E*(e) = {gel, 2]|¢*—q*~1—1=0}.
By the definition and by Theorem 5.1
(5.8) E;() = EX(1—¢) = |1, 2] for n¢{l, k+1,2k+1, ...}.

If n=1 (in case 1—¢, = 0) and q€Ef () = Ef(l1—¢), then by Theorem
5.1 it is necessary and sufficient that

I T B o

_— b .
g = ¢ g—1 gk—1
should hold, and this in turn is equivalent to the inequality

(5.9) g-—qk1—gk-2— ... —q—1>0.
By the periodicity of the sequence 1 —¢ and by (5.9) we get
(5.10) E;(e) = Ef(1—¢) ={q€[l1,2]|¢*—¢* 21— ... —q—1=>0}.
for ne{l, k+1,2k+1, ...}. Thus by (5.8) and (5.10)
(5.11) E-(e) = {g¢]l, 2]|¢k—g+1— ... —q—1=0}.
By the definition (5.7) and (5.11) imply
E(e) = E*(e)NE~(e) = {g€]l,2]l¢*—¢* ' —... —¢—-1=>0}

i.e. (5.4) is valid. O

Remark. From Theorem 5.3 we get as a special case (kK = 2) that if
e = (101010...)€{0, I}N then
Y5 +1 2]

E(e)={qe[1,21142—q—1>0}=] 2
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This will say that in case ‘/BT+l<q§ 2 the number

q_.

& it - -1
is always uniquely determined with respect to the interval filling sequence

{%} € A (see [4]).
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