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1. Let ¢(f) be a nonnegative increasing function, continuous on the left,
such that ¢(0) = 0 and lim ¢(f)= . For x=0 define the function
t+ oo

B(x) = of p(t)dt.

Then @ is increasing, continuous and convex. @ is called a Young-function.

We define the conjugate Young-function as follows: for >0 put y(f) =
= sup(x>0: p(x)<t) and y(0) = 0. It is easily shown that y satisfies all the
properties imposed on g. It is also true that

1p(<p(x)) =X= 1p((p(x) + 0).
The Young-function

P(x) = Of w(t)dt

is said to be conjugate to @.

The pair (P, P) of conjugate Young-functions satisfies the following ine-
quality of Young: xy=®(x)+¥(y), for all x=0, y=0. Equality holds if
and only if x€[p(y), p(y+0)] or Y€[(x), p(x+0)].

We say that @ satisfies the growth condition if there exist constants
a>1and A= 0 such that for all x=0, the inequality

(L.1) D(ax)= AD(x)
holds. The growth condition (1.1) is equivalent to
Xp(x)
Sup—V7 — p< oo.
(1.2) x>0 (x) p

p is called the power of @. The power ¢ of ¥ is defined similarly.
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2. Let (X,,, &,), n=0, be a nonnegative supermartingale. Denote by X%
the corresponding maximal function defined as follows

X% = max X,.
O=k=n

Recall the following inequality for nonnegative supermartingales (e.g.
[7]): For any nonnegative supermartingale (X, $,), n=0, the inequality

xP(X*=x)<EX,A\x
holds for all x> 0. We shall reverse this inequality under Gundy’s condition.

Lemma 2. 1. Let (X, §,) be any nonnegative supermartingale satisfying
Gundy'’s condition

Xp=cX,_, ae.,
Jor all n=1 and for some positive constant c. Then
(2.1) EX (X =x)=EX1(Xo=x) + cxEy(X*=x)
Jor all x=0.
Proof. Calculate EX y(X¥=x).

EX(X3=x) = E 3 X [1(X} =%) - 1(X£,=%)]
i=0

with X_;=X*,=0. It is clear that the random variable y(XF¥=x)—
— x(X¥_,=x) is nonnegative (since the function y(y=x) increases in y) and
&,-measurable. The supermartingale property and the conditional expec-
tation property together with the above facts imply

n

EXa(Xi=x)= S EX[x(XF=x)—y(Xt,=%)].

i=1

By Gundy’s condition it ensues that

EX x(X%=x)=EXyy(Xo=x)+c¢ A EX;,[x(XF=x)— y(X¥,=x)]=
i=1

=EXg(Xo=x)+¢ D EXH [1(XT=x)— 2(X{1=X)] =
i=1

X,
=EXg(Xo=x)+ cExf yd(x(y=x)) =

= EXox(Xo=X) + cXE[3(X% =X) — (X, =x)] =
=EX(Xo=x) + cxEx(Xz=X),
and this was to be proved. O
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Consider an arbitrary pair of conjugate Young-functions (@, %) defined
on [0, =), and introduce the Laplace transform

1) = [e-ta®(a),
oj (

for all O<f<1.

Theorem 2.2. Consider a potential (X, ,), generated by an adapted in-
creasing process A, n=0 i.e.

X,=E(A. l%n)— Ap.
If I(t)y< =, then
(2.2) EX} sE( lmax E(A. | (}n))sE@(A.,) +I(t)(1-1)~1

==

The first inequality on the left-hand side is trivial. The second one is the con-
sequence of the following statement ([5]): For every nonnegative submartin-
gale (X,,, &,) we have

(2.3) EX*<E®(X,)+I1()(1-1)"1,

provided that I(f)< .
We are now in the position to reverse inequality (2.2).

Theorem 2.3. Let (X, 5,,) be a potential. Suppose that
P(p(x)) = xp(x) —D(x) = O(x), as x—oo.
Then under Gundy’s condition, we have
(2.4) ED(X ) =cxop(Xo) + EXp(X,) + cKoEXY,

where x,>0 (s a suitable canstant.

Proof. Integrate inequality (2.1) on the interval (0, ) with respect to
the measure d(p(x)). By Fubini’s theorem, we have

X*,
EX,(X})=EXp(Xo) +cE [ xd(p(x)).
0

Since ¢ is an increasing function, it is obvious that EX,p(X,)<EX,(X}¥).

Consequently,
X*

EX9(Xn) SEXop(Xo)) +¢E | xd(p(x))-
0
One can easily verify that

[ta®) = ¥@w).

which implies
EX.9(Xy) =EXop(Xo) + cE¥(p(X3)).

4%
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Further, the assumption of the theorem ensures the existence of a posi-
tive constant Ke, depending only on @, such that

Y(p(x))=Ko-X, X=X,
Hence

EXp(X)=EX@p(X)+c [ P(p(X2)dP+

(X¥p=x0)

+e [ PeXHUP=EXg(X)+cP(p(x))+cKo [ XidP=

(X*nsxo) (x‘nEXo)
=c¥(p(x0)) + EXop(Xo) + cKoEX}E.

Using the fact that xg(x)=%/(g(x)) for all x=0, we can conclude on the vali-
dity of the desired inequality, finishing the proof of the theorem. O
We shall give an example of a potential satisfying Gundy’s condition.
Let (x,), n=1, be any real sequence such that x, t x, for an arbitrary
positive constant x. Consider the probability space (2, ¥, P), with 2 = N
and 9 being the o-field of all the subsets of N. The probability measure will be
defined on (2, %) by the formula,

P = ———

Define for all n=1 the random variables
Xn(w) = x_xnx((‘OS l‘l),

and let §, = o({1}, ..., {n}, {n+1, n+2, ...}) be the minimal o-field gene-
rated by the measurable partition given in the brackets.

Then it is easily checked that (X, ,), n=1, is a potential on the pro-
bability space (2, ¥, P), satisfying Gundy’s condition with ¢ = 1, since
— Xy x(w=n+1)=—x,y(w=n). Consequently, x—x,, y(w=n+1)=x—
=X (w=n), i.e. X 1, =X,
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