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0. Introduction

In recent years there has been an increasing interest in studying
decomposition methods, which replace a large-scale problem by a sequence
of smaller problems (see e.g. [1], [2], [5], [11]). This interest comes, on the
one hand, from many practical applications, in which large-scale program-
ming problems of a certain structure normally arise, on the other hand,
from the fact that structured problems of high dimension as pure mathemat-
ical problems, also occur inner mathematically, for instance, in solving op-
timal control problems numerically, say by discretization. As a rule, decom-
position algorithms work effectively only if the problem to be dealt with
possesses some structure. Moreover, if the considered problem is of a dimen-
sion such that it is impossible to solve it even on a large computer, the use of
decomposition techniques may be the unique way of solving the problem.

Another interesting class of problems is related to the control of hier-
archical systems, where often so-called multilevel methods are used.

The aim of this paper is to contribute to a unified treatment of both
classes of problems. For this purpose we consider a structured convex pro-
gramming problem as well as an optimal control problem and describe de-
composition algorithms (two-level methods) for them, using feasible methods.
They are based on the notion of the subdifferential of a certain function and
enlargements of this set (e-subdifferential and other modifications).

1. Statement and substitute problems

In the present paper two examples of structured problems are to be
considered. The first comes from convex programming:

1 ﬁlff(xf)*inf; i g(x)=0, h(x)=0, i=1,...,N.

We assume that the set of optimal solutions of (1) is non-empty and com-
pact, and the functions f; : R ~R, g; : R"~R™, h, : R"—+R%, i = 1,
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are convex and differentiable on the neighbourhoods of the sets X, =
= {x;|h(x,)=0}, where the sets X;,, i = 1, ..., N fulfil the Slater condition.
As can be shown, the following substitute problem is equivalent to (1):

(2 D(y) =Py, -- -, YN) = 2¢i(yi)»inf; ﬁlyf =0,
where = -
(3i) @i(¥;) = inf {fi(x))|g,(x)=Y;, hi(x;)=0},

i =1, ..., N. The function @ is defined implicitly. This means that for a
given y we determine the value @(y) by the help of the optimal solutions of
the arising subproblems (3i). Then we must find the optimal y subject to the
equality restriction.

The second problem under consideration is a structured optimal control
problem connected with a system consisting of interconnected subsystems:

’Q(x( u-),2(-)) = flﬁ:lﬁ(t’ X;, U;,y 2;)dt ~inf;

to

4) X =Ax;+Bu+Cz, X(ly) = Xio» ¥i=Dx;+Eu,

N
z,=Fy=>Fuy, weU, i=1,...,N.
[ i=

Here we assume that #,, f, and x,,€ R are fixed quantities, the states x,(f) are
elements of W3ii([t,, f,]) and the controls u(f), subsystem inputs z,(f) and
outputs y,(t) are elements of the spaces Ly, L3 and L3 respectively. Fur-
thermore, let A;, B,, C,, D;, E,, F;; be matrices of appropriate dimensions
(may be depending on time f). Finally, assume that U,c R" are convex sets
and f; are convex functions, either continuously differentiable in (x;, u;, 2;)
or additive.

Again we are able to formulate an equivalent substitute problem to (4)
in the following manner:

%) PH(-) =P0n(-) - Hyn()) = 2'/’1(Y('))->inf,

where

t
1/’:'(}’(')) = inf{J.fi(t) X; Uy 2)dE|X; = Ax;+ B, +Cyz,,
(61) fo
x,(ty) = X;00 Dix;+ Ejt; = y;, 2,=Fy, u,-éU,.}, i=1,...,N.

Thus, for given y(-) the value ¥(y(-)) is determined as the optimal solu-
tion of the optimal control problem (4). Then the optimal y(-) is evaluated.
Because of the structure of the problem, (5) falls into N subproblems (6i)
if y(-) is fixed.
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Of course, the vectors y and vector functions y(-) in (2) and (5), respec-
tively, must belong to the set @/ of elements such that the subproblems (3i)
and (6i) on the lower level are solvable.

Our aim is to solve problems (2) and (5) instead of (1) and (4). According
to the assumptions, the functions @(y) and ¥(y(-)) are both convex. How-
ever, it should be mentioned that these functions are nondifferentiable in
general. Further, we emphasize that to evaluate a value of @ or ¥ means
to solve N subproblems (3i) or (6i).

Because of the convexity of @ and ¥, algorithms of convex program-
ming for solving (2) and (5) can be used (e.g. feasible direction or subgradient
methods), which work as a rule on the basis of the subdifferential of @ and
¥ or some enlargements of this set. The methods considered below are of
two-level type and decompose the original problem into a number of smaller
subproblems, which are to be solved several times. They belong to the class of
feasible (or primal) methods. For the optimal control problem (4) this presup-
poses that there are at least as many controls as interactions.

2. Subdifferential representations

Let f be a proper convex function on the Banach space X, and let e=0.
Then the set 9.f(x,) = {x*€X*|(x*, x—x,) =f(x)—f(x,)+¢&, Vx€X} is said
to be the e-subdifferential of f at x,. The set 8,f(x,) = 0f(x,) is simply called
the subdifferential.

a) In the following, let x; be an optimal solution of problem (3i) for given
¥;- Under the assumptions formulated above the subdifferential of the func-
tion @ at the pointy = (3, ..., yy) has the form

N
(7) 3(156') = Xaq’i(}_’i) = {(y,lk’ .- .,y;“q)ly;"e&p,-(jz,-),i =1,.. -vN}’
with - ~ _
dp,(¥:) = {yFeR™|y¥=0, 34 R: 4,=0, fi(x)—g"(x)y¥+
+h;T(§i)j'_i =0, (A hi(x))) + ¥ ¥i—8i(x)) =0},

where g’(x;) denotes the matrix of partial derivatives of g,. The proof of this

statement may be found in [10]. Here the vectors y¥ and A, are Lagrange
multipliers corresponding to the restrictions g; and h; of (3i). According to the
representation described above the subdifferentials dp; and, therefore, also
0 can be generated when arbitrary solutions x; and corresponding Lagrange
multipliers y* and 4, of the subproblems are known.

b) In the special case of problem (1) when all functions are linear, i.e. if
fi(x) = (¢, xp), gix;)) = Ax;, hy(x;) = B;x;—b;, the following representation
holds:

297D = WFER™| =Gt T+ (b By= =0T +2,
y*A,— 1B, = ¢;, y¥=0, 1,=0),
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N
(8) 3,@5@) = {(yt, . ,yﬁ)ly:kéaei(p(yi),‘zl £ = ¢ 8120, i= l, .. ,N}

¢) Let the pair (x;(f), z,(f)) be a solution of the subproblem (6i), i =1, ...
..., N, for given ¥(-), and let p,(f) and g,(f) be corresponding Lagrange multi-
pliers of the first two restrictions of the i-th subproblem (6i). Then (cf. [7])

©) M) = ﬁla«pi(ﬂt»,
where
wF1) = WFOIYHO) = Flfiets T(t), T(t) FF0)—
_FTCT )~ (0, . G(t), - - -, O)T).

An analogous representation can be obtained in the case if the convex (pos-
sibly nondifferentiable) functions f; are additive.

3. Method of feasible directions for solving (2)

First of all, we rewrite (2) into a free minimum problem:
(10) B() = 2()+80/|Y),
N
where ¥ = 1y| > y; = Ot and ¢ istheindicator function. For solving (10) we
i=1

study a new method of feasible directions for nondifferentiable functions. As
is well-known there arise two main problems related with such a method:
to find for a given point y* a direction r* such that the directional derivative

D' (y¥; r¥)<0, and to determine the optimal step size f,. The main task on which
we focus our attention is the determination of an appropriate direction rk.

For this purpose let {¢};~1 { O be a monotonically decreasing sequence
and {g,(y, r)}i=1 a sequence of functions, closely related to @’(y; r) and ful-
filling certain assumptions (see [10]). Then the principal procedure may be
described as follows:
0°. Setk:=0,!: =0, choose x,€dom f.
1°. Determine r* from g,(y*, r¥) = min {g,(y*, r)| w1 <1}. If

g%, r*)< —eg,, then go to 2° else to 4°.
2°.  Find ¢, from ®(y*+1t,r¥) = min {S(y*+trk)|t=0}.
3°. Update yk+1: = ykt,rk set k: =k+1, go to 1°.
4°. I:=1+1, i.e. diminishe, goto 1°.

Remark. In Step I° it is not necessary to evaluate just the direction r*

which yields the exact minimum of g, but we may choose an arbitrary di-
rection r* such that g,(y*, r*)< —e,.
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It is natural to use the function
(11 gy, r) = sup {r, w)|weP ()},

where P, is a point-to-set mapping with P(y)>0®(y). How can a suitable
set P,(y) be chosen? Let us begin with the linear case of problem (1):

P)={w= @, ... ,wo)lw,=y¥+u, Yfeasz¢i(yi) Vi, p€R™M}.
Owing to this definition of P,(y), the inclusion

(12) 0. B(Y) CP(y) COne(y)
holds. In this case the following programming problem may be considered as
the problem of finding a feasible direction: find a direction r; = (ry, ..., ry))

N N
with |Irfl=<1, D'r;, = Oand h(r,)d—_ﬂsup{Z(r“, w;)|weP(y) t <O. This prob-
i=1 i=1
lem can be solved by determining a hyperplane separating the origin and
the set P,(y) with regard to the representation (8). Several methods imple-
mentable on a computer are described in [10].

N
According to (12) the following can be said. If for all r, with >’ r;, = 0
i=1

the inequality h(r)=0 holds (i.e. if 0€P,(y)), then ®(y)=min G+ Ne,
N

which means that y is a Ne-optimal solution. For 7, such that > 7, =0
i=1

and h(r)<O the relation min {B(y+17)|t=0}=D(y)—¢, is valid, i.e., if

04 P,(y) and, therefore, 040.®(y), an improvement of at least ¢, is ensured.

The situation is similar in the convex case of problem (1), too. For details

see [10].

4. A subgradient algorithm for solving (5)

We note that in principle it is possible to apply the above algorithm
also to the optimal control problem (4). However, this has not yet been stu-
died very well up to now. Here we consider a special case when U; = R"i,
i.e., if no constraints on controls are present. We shall describe a subgradient
method for solving (5) which is based on the representation of the subdiffe-
rential 9% given above.

As was mentioned in Section 1, problem (5) falls into N subproblems if
we fix an admissible vector y(f) = (¥,(f), ..., Yn(f)) and, therefore, also fix
2(t) = (z(1), - ., Z2y() with Z(f) = Fy(t). It means, for given ¥(f), we
have to solve the N problems

(13i) dxi () u(-)) = 4};(1, X;, U;, 2,)dt - inf;

lii = Aix,+Blll,+C,-E, xl(to) = xiO! D,-X,-+E,~ll, = 5’-".
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Solving (5) means to determin a y(f) such that the optimal solutions of the
subproblems (13i), i =1, ..., N yield an optimal solution of the overall
problem (4). For this purpose we want to apply a subgradient algorithm.
According to the relation (9) we must, for given y®(f), determine (x{(f),
ulh(t), p{(t), ¢(t)) from the system

X;— Apx;— B = CF y®, x,(t) = X0,

Dix;+Eu; = y{,

pi— ATP+ DT g+ fix,(t, X1y 1y, Fy®) =0, p(t) =0,
—BTpi+ETq;+ fu(t, x; Fiy®) = 0,

(14i)

i =1, ..., N, by any available method. Then we evaluate the required sub-
gradient of Y(y®)(-)) by the help of the formula (9), where (x;, &, p;, q;)
are replaced by (x{, u®, p(®, ¢(). Since there are no restrictions on u,
the systems (14i) are, under mild assumptions, solvable for every y(f), if the
problems (13i) possess a minimum. Consequently, in this case, the set ¢ is
the whole space and no projection is needed. Thus, it is possible to use the
following subgradient method:

0°. Choose numbers y,>0, 2 Ve =, i y% <o and an admissible
0 k=0

k=
function y©(f); set k: = 0.
1°. Solve (14i) for given y®(f). Determine y®*(f) according to (9). If
yW*(t)=0 stop: y*)(¢) is optimal.
2°.  Evaluate yk+1(f) : = y®(t) —p, y®*(f), go to 1°.

The convergence of this scheme has been proved in [9].

Remarks. 1. If there are restrictions on the controls (e.g. inclusions
u;€U,) or mixed equality or inequality relations for the subsystems
G(t, x;, u;)=0, the subgradient method in the form described above cannot be
used, in view of the fact that the new vector function y*+1(f) must remain
admissible, which is in general not true. Therefore, other procedures such as,
e.g., the method of feasible directions considered above, have to be applied.
Global restrictions can also be regarded if the described algorithm is modi-
fied in an appropriate manner (cf. also [4]).

2. Analogous statements (subdifferential representations) can be made
and corresponding algorithms may be derived using the dual approach —
the approach of goal coordination (cf. [8], [11]) where problems similar to
(4) are discussed).

3. For a linear-quadratic optimal control problem similar to the one
considered here (but without interactions) a subgradient algorithm was stu-
died in [3], [6].
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5. Final remarks

Note that the approach described above, applies, in principle, also to
nonconvex problems. However, in this case a perfectly developed theory does
not exist until now.

During the period of the last ten years the optimization team of the
Department of Mathematics of Technical University Karl-Marx-Stadt
(GDR) has intensively studied large-scale structured optimization problems
(linear, convex, optimal control and other problems). At present, two
resource allocation type methods for very large linear programming problems
have been developed and implemented for the ES 1040 computer (up to 4000
restrictions in each subproblem, the number of variables is virtually unlimi-
ted). They use the programming system OPSI (OPtimization by SImplex
method) and modify it. Problems of this kind and scope arise e.g. in produc-
tion planning in industry and agriculture.
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