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1. Introduction. In the papers [1], [2] we have introduced an application
of the gradient method to the solution of boundary value problems involv-
ing a self-adjoint ordinary linear differential equation.

The problem is the following:

S (— 1L (p . 4 =
(1.1) au= 3 (=) d,,‘,[P,xx) dxk] —f
(1.2) w(@a) =uw'(@@)= ... =uN"a) =ulb) =)= ... =u®N"b) =0

where f€ Ly(1) is a given function, I = [a, b] and the functions P,, P,,... Py
satisfy the conditions

)P ()eCi(y, k=01...,N
(1.3) i) P(x)=>0 foreveryxel,k=0,1,...,N—1
iii) there exists a constant m= 0 such that for all
X€ 1, Py(X)=m.
Let us choose an arbitrary function wu,€ HY?N)(I) and assume that we have

obtained the (n— 1)t approximation of the solution UeHI2N(I) of the

boundary value problem (1.1). Suppose we alrcady have
Upy gy e ooy Uy,

by introducing the notation

(14) .fn = ‘A”n‘il _.f
and at each step we solve the boundary value problem
2N

15 DY ey = S
(1.5) Vigy=V'(@)=...=VN"Da)= V() =V (b)=...=VN-1b) = 0.
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Then we get the nth approximation of u
(1.6) U, = u,_+1t,V,

where ¢, is defined by

b
[ ivaor
(1.7) P

N

b
V|2
2, | pdvioras

From the above algorithm we obtain that the sequence (U,)e HJ®N)(I) con-
verges to the solution u of the boundary value problem (1.1) in the norm

N—1
lully = > max [u®] +[|u™|,
k=0 1

and the error is estimated by
(1.8) |, —u|=Kyq", (n=0,1....)
K,=0is a constant, 0<g<1 [2].

2.1. Introducing a simple spline function to obtain some approximate
results. Practically it is not easy to use this method [2] to get the approxi-
mate solution for (1.1). So we are forced to use a simple spline function for
this purpose [4], [5], [6], [7]-

Our main purpose will be to study applications of simple spline functions
to the numerical solution of (1.1). We develop a method which produces a
smooth approximation to the solution U in the form of piecewise polynomial
functions of degree <r which are joined at points called knots which have
at least m continuous derivatives. If § is the spline function then it satisfies:

(2.1.1 SeCo(l), m-r.
(2.1.2)  S¢a, in each subinterval [x;, x,.,], 1=0,1, ..., (n=1)

where 7, denotes the set of all polynomiais of degree < r.
We define the knots by

(2.1.3) dia =xy<x,<...<x, =0,

and in our case we shall deal with equal subintervals and in this paper we
denote
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(2.1.4) h:=x,41—x, v=20,1, ..., (m=1),
h = _f’:?_,
m
(2.1.5) Sii1, ) = Sopi(Grn, ), v=0,1,...(n—-1),

where S, is a simple spline function interpolated on the mesh (2.1.3) which
gives the sets of points

(2.1.6) {(or g1 -8 8)h ol - 80 - )
2.2, Some notations. a) in (1.7) assume that

(VD) = a0, (V)i = £a10),

(2.2.1)
v=0,1,...,(m—=1),m = gn,,.
Also
N ” _
2 PV AR = gnx),
(2.2.2) e
Z plr(x )(V(k (X))x Xy T g’”(xv) = ‘én’”’
(2.2.3) Shn=tn ,,+’—"—”iﬂh~""—” W~ ) = Syl )-

Also we have
Spon ) = o +EEELE
(2.2.4)

b) Let w(h, g) and w(h, g) be the modulis of continuity of the functions g
and g respectively.

g”"(x X)) =Sun(x,8), v=0,1,...,...,m—1,

Lemma. The inequalitities
lg(X)Sy(X,g”SZW(h,g), = Oy 1! . 'ym"—ly

= 2W(h, gn)(b - a)

b
- fsh, n(x! gn)dx
a
are ftrue. O

Proof.
186)— Sulx, 9)] = Hos) = 800) (|

g2(x) — g(x) — 5

(2.25) = |g(x)—g(x)| + ‘g("”“)h‘g(x”)', y=0,1,...,m—1.

|2() = 8(x, g)| =2w(h, 2),
where w(h, g)~0 as m— .



126 A. SHAMANDY

Also we have

‘fgn(x)dx_ fsh A, gn)dr’—

i a

b
<‘!f‘gn(x)_sli,n(x!gn){dx =

m—1 v+l

=2 [ 1600 =5y nlx g)axl,

r=

from (2.2.4) if follows
—1 1 +1

Z f lgn(x)_sv,n(xv gn)Ing

x x
m—1 "+l m—1"vH1

= 2 | 1800 = Sunl, go) = 2wl gr) 2

=0 X}
Then we get
I b

[ a0 [, (x| <20t g)- (0~ ),

a

(2.2.6)

From lemma (1) we can calculate the value of the integral

[ (vV2M0)ydx

in equation (1.7). From (2.2.1) we know that

b b b
[ g.00dx = [ (VE)dx— [ s, x, godx.

But
m—1 r+1 m—1 v+1
fsh n(x gn)dxvz f Sh n(x gn)dx - ZO x‘[ S", ”(x? gn)dx =
mt ! Git,n—,
ot 22 —x,) ldx =
-3 J E )
(2.2.7)

m—1 — 0.
=2 { g n h+ g—’ifJL"é—gl'llz} =

= % Z— |@sr1,n+ 8 n| =~ Z {(V(N)(X)),( Xop1 +(V(N)(x))x -
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Then we have from (2.2.6)

ib hm—l
,jkvw&»wx—gfg;«vwxnﬁ=nﬂ+(vwxwﬁ=a

=2(b - a)w(h, VIN(x)).
Lemma 2. The following inequalities
|8(¥) = su(x, )| =2w(h, g),

(2.2.8)

b

"«mu—jamagwq<zw-MuMg»

are true. [

Proof. The same as in Lemma 1. {7
We can prove that

SRR~

(2.2.9) Z j POV

|’ =0q

Z gl }l n‘} Ql n)! 2(b-a)lv(h’gn)
= i

From (1.7), (2.2.7), (2.2.8), (2.2.9) we can define £¥ as

fshnxgn

(2.2.10) t*(m) = —%—. —

n Vh
f§ n(%, gn)d
a

m—1
Z {gn,xv+gn,v+l}
(2.2.11) thm) = - Spmm——, n=12,.... O

Z {gn ¥ +{’n 1+l}

i

and we can prove that

Lemma 3. The inequality
(2.2.12) [t¥(m)—t,| = K, max {w(h, g,,), w(h, g,)}
is true, where K, is a constant. ]

Proof. Assume that

b N b
_Y . _ 0.
b= [ vy, s zaf )(V 9 x))2dx,

a

b
Z‘r,l;(,n) = ’?(;(m 7y V(m) :fsm n(xv gn)dxx (5(”1) = fgh,n(x7 ‘—gn)dx’
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then
()| = | 2o U] Ly dlm) =8 ym)|
T o b(m) |6-6(m)]
_ Lowm)] 16 = 8(m)| +]6(m)] - |5m) — 8|
18- 8(m)| '

From lemmas (1) and (2) we get

So(h, g,) + yoh, £,)

[f,—t¥m)| = o -0 as m— .

Then for some constant K, we have
[t, —t¥(m)| = K,. max{(w(h, g,), w(h, 9)}.

3.1. Application of the Gradient method to the approximate solution of
a boundary value problem of a self-adjoint ordinary differential equation. We
can apply the gradient method given in [2] to obtian a numerical solution of
(1.1) by using (1. 4), (1.5), (2.2.8), (2.2.9), (2.2.11) and the boundary condition
0 )
(3.1.1) [%] =[dﬂ-Fl] =0, j=0,12,...2N—-1.
dxj x=0 dxj x=1

We can summarise the algorithm as follows:
S(x) is a given function in (1.1). Consider the interval I = [0, I].
Assume that u, = 0, from (1.4), (1.5) we have,

i) = Auy—f(x) = — /(%)

a*NV
(— 1)(N)_71;(§VL = fix) = = f(x).
We can prove that
X &N -1 &
3.12) V) = (=N [ [ [ fA(RRYE, . .. dipy_san_s.
0 0 0

From (2.2.10) we can prove that

m—1
2 gL+ 81041}
v=0

5 =

m—1 ’
> gLyt g0}
and then by (1.6) "
uf = uF+t¥vE uy =0, V,=VH
By the same way we can calculate

(3.1.3) u¥, u¥, ..., u*

n—1:
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Then the n-th approximation of the u solution of (1.1) is
(3.1.4) uf¥ =ukt_+t*vV, V., =VX
where £* is given by (2.2.11).

3.2. The convergence of the sequence (1¥). In [2] we showed that the
sequence of approximations (u,) converges to the solution of (1.1) and the
error is estimated by (1.8).

For the sequence (1) we have [2]

1) — %] = |1(X) — 1,(X) | + |u,(x) — u¥(x)] <
< Kog" + 1,0 —u3 (x|
We can prove that

lun(x) —up(x)| = 2 {tw, — t:‘u;*}! =

=K, max {w(h, g,), w(h, g,)}
(3.1.5) |u(x) — x| = Koq" + K, max (w(h, g,), w(h, g,)}.

Then
u(x)—~uk asn—-o,0<q<l, K, is constant.

The above results can be formulated in the following assertion.

Theorem. Consider the boundary value problem (1.1), (1.2). Let S, S be
simple spline functions (2.2.3), (2.2.4) interpolated on the mesh A:a = x,
<Xy<...<X, = b, (X,41—X, = h) to give the sets of points {gq, g1, - - -, &n}>
{20, 81, - -, 8,)- Suppose we have obtained the (n—1)™ approximationof the
solution u of (1.1), as in [2],

uf, u¥,... u¥_, by solving for each step the boundary value problem (1.5).
Then the n-th approximation of uis u¥ = u*_,+t*V , where t} is defined
by (2.2.11).

The sequence (u¥) converges to the solution u and the error is estimated by
3.1.5). O

REFERENCES

[1] Shamandy A., Application of the gradient method to the solution of the equation
Ax = f, in the case of unbounded operators. Ann. Univ Sci. Budapest., Sectio Math.
26 (1983), 71 —76.

[2] Shamandy A., Application of the gradient method to the solution of boundary value
problems for a self-adjoint ordinary diff. equation. Annales Univ. Sci. Budapest.,
Sectio Math. 26 (1983), 63 — 70.

[3] Shamandy A. and El-Nenae A., Analiticity of the solution of boundary value problems

for a self-adjoint ordinary differential equation with polynomial coefficients via
gradient method. Annales Univ Sci. Budapest, Sectio Math. 26 (1983), 77 —79.

9 ANNALES Sectio Computatorica — Tomus V.



130 A. SHAMANDY

[4] Ahlberg J. H., Nilson E. N. and Walsh J, 1., 'The Theory of Splines and Their Appli-
cations. Academic Press, New-York and London, 1967.

[5] Jdnos Baldzs, Private communications. E6tvios Lorand University of Science, Nume-
rical Analysis. Dept. Budapest (Hungary).

[6] Fawzy T., Spline functions and Cauchy problem. 1. Annales Univ. Sci. Budapest.,
Sectio Computatorica, 1 (1978), 81 —98.

[7] Fawzy T., Kéhegyi J. and Fekete I., Spline functions and the Cauchy problems V.
Application with programs to the method. Annales Univ. Sci. Budapest., Sectio
Computatorica, 1 (1977), 109 —127.

[8] Schultz M., Spline Analysis, Prentic-Hall, Inc., Englewood Cliffs (N. J.), 1973.



