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Introduction. There are different methods for solving nonlinear operator
equations P(x) = 0 [1]. In many cases a functional equation F(x) = 0 equi-
valent to an operator equation P (x) = O can be constructed. Thus it seems
to be convenient to formulate the methods of solution of nonlinear operator
cquations for functionals as well. With these methods functionals need less
calculations than do operators.

The generalized tangent hyperbola method for nonlinear operator equa-
tions is:

-1
Xypy = xn—[l— 11 P (x )Py IPkx) (n=0,1,2...)

where /7, denotes the inverse of P'(x,,).

It can be seen that two inverse operators should be calculated at every
iteration step.

The present paper discusses the generalized tangent hyperbola method
for functionals.

Let X be a complete, linear normed space.
Let us consider a

(1) F(x) =0

nonlinear functional equation, where F(x): D =R, Dc X convex and F(x)
three times differentiable in D, in Fréchet’s sense. The generalized tangent
hyperbola method for functionals was constructed as follows: [1]

(2) Xn+1 = Ap = = i'(x;?//(x )yz yn’ n= 0) l) 2; e
F,(Xn)yn -5 _,_n*i F(xrl)
2 F(xp)yn
where F’(x,) and F”(x,) represent first and sccond order derivatives, res-
pectively, in Fréchet’s sense, for x,,€D; {y,}c X are chosen so that the follo-




104 B. SZABO

wing condition can be satisfied:
F(n)-yn = [IF Gl
where |y, ll =1, n=0,1,2 ... [1], [2]
Theorem 1. Let us assume that the following conditions are satisfied:
(x, is a starting approximation)
1

1.) e —— =By < 4 o)

1 FCxo)ll
2) Il L <y o

1E“ (o)l
3.) NF"()|=M and ||[F"”"(x)|=N x€D(x,, 0) where

16
Q=g D(xo, 0) : = {x :[Ix =X/l =0} and
F”(x), F"’(x) are 2., 3. order derivatives;
4) hy = BeMn,= i
1 N

5) Og 1=

then there exist x*€ D, F(x*) = 0and
22207ty

e ]
2-”[! - »é--ho]

Proof. First of all we prove that conditions 1.),—5.), are satisfied for x,,
too, where the first approximation x, is given by iteration (2), for n = 0.

Y ., F'(xg)— F'(:
2) L |
1E* (ol
Using the Lagrange’s generalized formula and conditions 1.), 3.),: we have
IECell = 1 E(eoll - [1 = BoMllx, —Xoll],

and using (2) and the conditions 1), —4), we can establish the estimations:

[Ix* — x| =

oy |l = | F(Xo)] . 1 - Mo
B T T R W
2 IF'Go)l IF/Gxo) 2




105

AN ITERATIVE SOLVING OF NONLINEAR EQUATIONS
]
, . h
IF Gl = I F(xo)lf 1 ===} —
1 —Eho
and
1 _ 2—h,
4) . i (=B
IF Gl 2—3h,
Thus the condition 1.), is valid for x; too and we have
By,<B,<4B,,.

b) Applying the generalized Taylor’s formula for F(x):

Ji F ) = Flxo) = F Gy =) = F (o), =30, =~ LIF7 G-~

where x:= xo+ (X, —%,), O=d=I,
we get

FQu)| = Fig) + F/o)(x, - xo) + ) - ) +

|
l g2y, R
+ 6—|\F QN - M2y = X1
Using the identity
. . .., 2
F(xo)+ I (xo)(-\'l—xo)+*é F7(Xo)(x; — Xo)* =

13(x0) [ F” (x0)y3 ]

4. [F’(xo)}’n]z-[ F/(x)Yo— ;i((";y (0>]

and the conditions 1.)—4.) we obtain

o Ple) [FCo)ysl B M n
. . I FGom
F 0/70 1 0 } /
ALF Gy | e S (0)] [ 10]
SO
I B, M? 1 N
5 “( = Lo R — I (}
(5) | F(xy)] 4 [l_!h ]2 n +6 [I___l . ]317
2’ 90

Using (4) and the condition 5.),:
MFCl _ oo

| N Mo
= = - -+ e — ] =10
L F(x)l 2[1— Lh)- 1—-3-h [2 3B,M{1— "h, ] 4
2 2 2
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so condition 2.), is valid for x, too and

(6) 7715/13"705"39'-

c) Later weshall prove {x;, x,, :..,X,, ...}€D where {x,} is given by the
method (2), so the condition 3.) is valid for x, too.
d) Because of estimation (4) and relations (6)

Iy := B,Mpy,<4B,M 10. = I,
1 3
hy= 5 so hy=4h.

¢) The condition 5.) is valid for x; too because of
hy<hy, B;=0 so og,<0g, (=2).

So the conditions 1.)—5.) are valid for x,, too.
The following inequalitites can be proved by induction:

Bn :‘<'4l_gn~l
where
2—n
B,:= B, - ---rl
n n—1 2 . 3/ln_1
'/nshﬁ—lnn" 1B
wlere
Nn+= J_I:}(_Xﬂl’ h,:= B,Mn,;
[1F*Cen)l
Op=0,_1=2,
where
N
2_ _’_ - —— _] —
3B,IM[1 ., lzn]

From that

=22

2
n—2 hinas

but
. 1
h,<4h3_, =--(2h,_ )%
5 1)

n—1-

1
= ~(2h,_ )
2( 2)

n—1—
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that is why
l . all
h,= —2—(2110)3

SO )
Zh 31
"n ( 2))}1 UIE
Because of the induction and the (2)
1
[1Xn4 1 = Xnll = - '"]—T--"-,
- 2 hn
10+ = Xl =1Xn0 1k = Xnagoall + -+ X — Xl =
= Mo . (,’,2_’10)3,”_ l[ | — l _]22.
l—- l hn 2211 2k
2

Thus the sequence {x,} represents a Cauchy-sequence and the space X being

complete, there exists the limit x* := lim x,, and the estimation
N oo

22 Pa ol
Ix*—x,l| = —- £ - (2h,)3"1.

on 1
22 [1 -»2».-/10]

Now we prove that {x,}cD n=20,1,2, ...
X0 = Xnll = %o = Xull + [, = X[ + - - - +[1Xp—y = Xall =
1

=- (Mot mt - )=

1
) h,

1 16

= e /s ! + 1](.) +...F o = ”')rlo =0
| 42 4n 9
I—--hy
2
and Ixo—X[|=0 too.

The limit x* satisfies the [7(x) = 0, because using the inequality (D)

, I B,M? I Ny}
(X)) = i, b Nup

/ 2 3=
4 [l - .!--lzn] g [l - 1 /zn]
2 2

3 }2
= 4_ _ln'r)_n 1+ N___ SC.ZZQ.
3) B, 68, M? 4n

where C = constant. If n— - then |F(x,; )] -0
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F(x) being continuous so
lim|F(x,)| = |F(x*)] =0 so F(x*)=0. 0O

Nn— oo

A similar theorem was established in [1] for the cases of operator equations.
F(x)

The following theorem can be proved similarly, llSiI]g-ll;:'T)W instead
X
of F(x).
Theorem 2. Let us assume that the following conditions are satisfied :
1) F'(X)yo=0, [yl =1
2.) [l = Xoll =9
3. —H——[;,—-(§)—H~SM and IF 7(,.*7),”7 =N xeD
IE" (o IF(xo)l
where D := {x : ||x—X,|| =2n,};
1
4.) hy = Mr)0_<.-2 ;
5.) Oy = - > - +~5N =4;
4—-2h, 6M?

(where x, is a starting approximation).

Then there exists x*€D, lim x,, = x*, F(x*) = 0 and

N> oo
Py =¥ =21 =(2hg)*" 1y O

Application. Consider the non-linear operator equation P(x) = 0 x¢ X
and the equivalent functional equation F(x) = 0 choosing the F(x) in the
following way

F@o) = 1P)*

Putting Q(x):= P’(x)P(x) where P’(x) is the adjoint of P’(x) Fréchet
differential, we can be given y, in the form [1], [2]

Q)
el .
F/ ()Y = 2 1QE)I = IF' (),
2
F”(; 2 — T , .
(x)y2 0 (xn>u2<Q (%) Q(x,), Q(x,))

where
{, ) is a scalar product.
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So (2) is in the following form:

P(x,)||?
(7) Xn+1 = Xp— 1 “P(”Y )(”2 )H Q(xn)
20QEeI* == -+ = ™ (Q(X)Q(X), Q(XR))
2 QeI
(n=0,1,2,...).
Illustrative example. We apply (7) for Altman’s example [3]. Consider

the system of equations

fi=w*+u+v+15=0

g:=w+u—v—-1 =0

Put x:=(4,v), Xo:= (=05 —1), P(x):= (f(u,v), g(u,v))
Q(x): = F’(x) P(x) = [211—1 2u+1][ui+u+v+ 1,5J _
I -1 \w*+u—-v-1

_ [4113 + 612+ 3u+ 0,5]

20425
Apply theorem 2.:

1Q(Xo)l = 0,5
=Xl = oy P =y = —
8 4 8
12124+ 12u+3 0

Q(x) = [ ] IQ()I=2 xeD

0 2
NF7()|=4 xeD M =4,

[24u+ 12 0]
0 0

0 O
55

IR"(X)l|=6, N =12, hy, =0,5, o, = 5;<4.

Q) =

Theorem 2 can be applied. In our example h, = 0,5 and method (2) produces
the solution with 8 digits after 14 iteration steps, while Altman’s method [3]
needs 22 steps. Although because of the second term in the denominator
method (2) uses some more operations than the Altman method, in compu-
tation time method (2) is shorter by more than 259,. If the functional

F(x) is chosen that h,< % then the stated order of convergence is 3.
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If we know nothing about the roots of the operator equation P(x) = 0
how shall we find an initial approximation x,?
The set of numbers used by any computer can be given by

T:=[—10, —10-7U{0}L[10, 101]

wlhere f is a characterizing integer.

As T is not connected at zero, we look for a suitable x, only in [10-¢,
1011k (k is the number of components of x,) and using simple mirror transfor-
mations we can also find x, if it is somewhere else in T*. Our method in
[10-¢ 10*]F was as follows: let L. be the set {10, 10—-¢*1 ... 10° 10, ...,
10'}. First we find the minimum of F(x) over L¥. If it is not good for x, we
continue approaching the minimum of F(x) over [10-!, 10‘}* by using gra-
dient method until we find an x, satifying the conditions (2) of the fast
method.
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