APPROXIMATE SOLUTION OF THE INITIAL VALUE PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS

Ву

THARWAT FAWZY

Math. Dept., Faculty of Science Suez Canal Univ., Ismailia, EGYPT (Received November 25, 1983)

1. Assumptions and procedures of the method

Consider the initial value problem

(1)
$$y' = f(x, y), \quad 0 = x_0 \le x \le 1 \quad \text{and} \quad y(0) = y_0.$$

We assume that $f:(x_0-\alpha, x_0+\alpha)\times \mathbf{R}\to \mathbf{R}$ is defined and continuous with its first r derivatives, where $\alpha>1$.

For q = 0, 1, ..., r we define $f^{[q]}$ by the algorithm:

$$f^{[0]} = f,$$

$$f^{[q]} = \frac{\partial}{\partial x} f^{[q-1]} + f \frac{\partial}{\partial y} f^{[q-1]}.$$

We remark that the derivatives of y, the solution of (1), can be expressed by the help of $f^{[q]}$ as follows:

$$y^{(q)}(x) = f^{[q-1]}(x, y(x)).$$

We also assume for $|x-x_0| < \alpha$ and $y, y_1, y_2 \in \mathbf{R}$

(2)
$$|f^{[q]}(x, y)| \le M, \quad q = 0, 1, \ldots, r$$

and the Lipschitz condition

(3)
$$|f^{[q]}(x, y_1) \quad f^{[q]}(x, y_2)| \le L|y_1 - y_2|, \quad q = 0, 1, \ldots, r$$

where L and M are some constants.

Consider the interval $0 \le x \le 1$ and define the mesh Δ by

$$\Delta: 0 = x_0 < x_1 < x_2 < \ldots < x_k < x_{k+1} < \ldots < x_n = 1$$

and let

$$x_{k+1}-x_k=h, \quad k=0, 1, \ldots, n-1.$$

The modulus of continuity of $y^{(r+1)}$ is denoted by ω_r .

Choosing the required positive integer m (the order of the error to be achieved), we define the function approximating the solution of (1) as $S_{a}(x)$ given by:

(4)
$$S_{\lambda}(x) = S_{k}^{(m)}(x) = S_{k-1}^{(m)}(x_{k}) + \int_{x_{k}}^{x} f(t, S_{k}^{(m-1)}(t)) dt$$

where $x_k \le x < x_{k+1}$, $k = 0, 1, \ldots, n-1$ and $S_{-1}^{(m)}(x_0) = y_0$. The following m iteration processes are considered in the above formula (4) for $x_k \le x < x_{k+1}$ and k = 0, 1, ..., n-1:

(5)
$$S_k^{(0)}(x) = S_{k-1}^{(m)}(x_k) + \sum_{q=0}^r \frac{f^{[q]}(x_k, S_{k-1}^{(m)}(x_k))}{(q+1)!} (x - x_k)^{q+1},$$

(6)
$$S_k^{(j)}(x) = S_{k-1}^{(m)}(x_k) + \int_{x_k}^x f(t, S_k^{(j-1)}(t)) dt, \quad j = 1, 2, \dots, m.$$

2. Error estimations and convergence

The exact solution of (1) can be written in the following forms, for $x_k \le x \le x_{k+1}$ and k = 0, 1, ..., n-1:

(7)
$$y(x) = y(x_k) + \sum_{q=0}^{r-1} \frac{f[q](x_k, y_k)}{(q+1)!} (x - x_k)^{q+1} + \frac{f[r](\xi_k, y(\xi_k))}{(r+1)!} (x - x_k)^{r+1},$$

where $y_k = y(x_k)$ and $x_k < \xi_k < x_{k+1}$

(8)
$$y(x) = y_k + \int_{x_k}^{x} f[t, y(t)] dt.$$

If we denote for $x_k \le x < x_{k+1}$

$$|S_k^{(m)}(x) - y(x)| = e(x)$$
 and $|S_k^{(m)}(x_k) - y(x_k)| = e_k$

then (6) and (8) together with the Lipschitz condition give

$$\begin{split} e(x) &\leq e_k + L \int\limits_{x_k}^{x} \left| S_k^{(m-1)}(t_1) - y(t_1) \right| dt_1 \leq e_k + L \int\limits_{x_k}^{x} \left\{ \left| S_{k-1}^{(m)}(x_k) - y_k \right| + L \int\limits_{x_k}^{t_1} \left| f[t_2, S_k^{(m-2)}(t_2)] - f[t_2, y(t_2)] \right| dt_2 \right\} dt_1 \leq \ldots \leq \\ &\leq e_k \sum_{j=0}^{m-1} \frac{L^j h^j}{j!} + L^m \int\limits_{x_k}^{x} \int\limits_{x_k}^{t_1} \ldots \int\limits_{x_k}^{t_{m-1}} \left| S_k^{(0)}(t_m) - y(t_m) \right| dt_m \ldots dt_1. \end{split}$$

Using (5) and (7) and $y^{(q)}(x) = f^{(q-1)}(x, y(x))$, it is easy to prove that

$$|S_k^{(0)}(t_m) - y(t_m)| \le e_k + Le_k \sum_{q=0}^{r-1} \frac{(t_m - x_k)^{q+1}}{(q+1)!} + \frac{\omega_r(h)}{(r-1)!} (t_m - x_k)^{r+1}.$$

Thus, for $c_0 = Le^L$ if L > 1 and $c_0 = e$ if $L \le 1$, it is easy to get the following inequalities for $x_k \le x \le x_{k+1}$:

$$e(x) = |S_k^{(m)}(x) - y(x)| \le e_k(1 + c_0 h) + \frac{L^m}{(m+r+1)!} \omega_r(h) h^{m+r+1},$$

and consequently

$$e_k(1+c_0h) \le e_{k-1}(1+c_0h)^2 + \frac{L^m}{(m+r+1)!}\omega_r(h)h^{m+r+1}(1+c_0h),$$

$$e_{1}(1+c_{0}h)^{k} \leq e_{0}(1+c_{0}h)^{k+1} + \frac{L^{m}}{(m+r+1)!}\omega_{r}(h)h^{m+r+1}(1+c_{0}h)^{k}$$
and $e_{0} = 0$ gives
$$|S_{k}(x) - y(x)| \leq \frac{L^{m}}{(m+r+1)!}\omega_{r}(h)h^{m+r+1}\sum_{i=0}^{k} (1+c_{0}h)^{i}$$

and thus we have proved the following theorem.

Theorem 1. Let y(x) be the exact solution of (1). If $S_A(x)$ given in (4) is the approximate solution, then the inequality

$$|S_{\mathcal{A}}(x) - y(x)| \le c_1 \omega_1(h) h^{m+r}$$

holds for all $x \in [0, 1]$, where $c_1 = \frac{L^m(e^{c_0} - 1)}{c_0(m+r+1)!}$ and $c_0 = Le^L$ if L < 1, and $c_0 = e$, if $L \le 1$.

Theorem 2. The inequalities

$$\left| \frac{d^{q+1}}{dx^{q+1}} S_{d}(x) - \frac{d^{q+1}}{dx^{q+1}} y(x) \right| \le c_{2} \omega_{r}(h) h^{m+r+1} \quad \text{if } m > 1,$$

$$\left| \frac{d^{q+1}}{dx^{q+1}} S_{d}(x) - \frac{d^{q+1}}{dx^{q+1}} y(x) \right| \le c_{2} \omega_{r}(h) h^{r+1} \quad \text{if } m = 1$$

hold for all $x \in [0, 1]$ and all $q = 0, 1, \ldots, r$, where $c_2 = (m+r+1)c_1$.

Proof. From (4) and (8), using the Lipschitz condition we get

$$\left| \frac{d^{q+1}}{dx^{q+1}} S_A(x) - \frac{d^{q+1}}{dx^{q+1}} y \right| \le L \left| S_k^{(m-1)}(t_1) - y^{(m-1)}(t_1) \right|$$

and applying theorem 1, taking into consideration m-1 instead of m, it is easy to complete the proof. \square

Theorem 3. The error by which $S_{-1}(x)$ fails to satisfy the differential equation (1) is given by the inequality

$$|S'(x)-f(x, S_{\mathcal{A}}(x))| \leq c_3\omega_r(h)h^{m+r-1}$$

which holds for all $x \in [0,1]$ where $c_3 = Lc_1 + c_2 \cdot \square$

Proof. Adding and substracting y'(x) and using Theorems 1 and 2, it is easy to prove Theorem 3. \Box

REFERENCES

Fawzy T. and Al-Mutib A.: Spline Functions and Cauchy Problems, XII. Error of an arbitrary order for the approximate solution of the D. E. y' = f(x, y) with spline functions. Proc. of the 1st Int. Conf. (Trinity College, Dublin, June, 1980) Bool Press Lim., Dublin.