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In [1] a general necessary condition for smooth-convex problems was
proved. In the present paper we consider a more general problem in which
an infinite number of inequality constraints is given. The proof of the corres-
ponding nccessary condition needs essential modifications at several points
while some parts can be adapted from [1]. For the reader’s convenience we
include a complete proof [2, 3].

Let X and Y be real Banach spaces, let U be an arbitrary set, let
[ XXU~I=f= o, fir - -+ [ - -.)and F:X X U~ Y be arbitrary functions.

We consider the problem:

() Jo(x, u)—inf,
2 (x, n)eXx U,
3) F(x, u) =0,
(G)) fi(x, u)=0, (i€N).

Problem (1)—(4) will be called smooth-convex problen at a point
(x4, )X )U, if

A) the point (x,, u,) satisfies conditions (2)—(4),

B) forevery uc U, the functions xi—F(x, u) (x€ X) and x|—f(x, u) (x€ X)
belong to the class C, at the point x,€X: and exists a K=0 such that for
every [€N,, u¢ U we have

!fl(x*‘ II)' = K and ”(’]fi(x*a u*)” = Kv

C) there exists a neighbourhood k(x,)c X of x,€ X such that for every
x€k(x,) the functions w—F(x, u) (ueU) and ul—f(x, u) (ueU) satisfy the
following convexity condition: for every u!, u?c U and arbitrary «€[0, 1]
there exists a u€ U such that

F(x, u) = «F(x, ut)+ (I —a) F(x, u?),

5 wy=af (5, )+ (1—) fi(x, 1), (i€N,).
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We shall be concerned with necessary conditions for a local minimum in
the problem (1)—(4) in the following sense:

We shall say that a point (x,, u,)€X XU is a local minimum point of
the problem (1)—(4) if there exists neighbourhood E(x*)cX such that for
every (x, u)E%(x*)x U which satisfies constraints (2)—(4), the inequality

Jo(s uy)=fo(x, u)
holds.

We consider the Lagrange function of the problem (1)—(4):
L:XXUXIZXY*~R,

L(x, u, 4, y*¥):={(4, f(x, u)y+ y*, F(x, u)).

Theorem (necessary conditions for smooth-convex extremuni problems).
Suppose that

a) (1)—(4) is a smooth-convex problem at the point (x,, u,)€X XU,

b) the range of the operator 9,F(x,, u,):X—~Y is finite codimensional
and closed in Y,

) (Xy, Uy) is a local minimum point of the problem (1)—(4), then there
exists a finitely additive nonnegative measure A€l¥ and a y*eY* (Lagrange
multipliers ), for which 0 = (2, y*) on the following statements hold :

(5) 01L(X gy Uy 4y ¥*) = 01 (X, Uy)A + 01 F¥(xy, uy)y* = 0,
(6) L(Xyy Uyy A, ¥Y*) = min L(x,, u, A, v¥),

and for any set AcCN “v

(7 Aff(x*, u,)dA = 0.

(In particular: for ieN A{i}) fi(xy, 1e) = 0) O

Proof. We shall use the following notations:
Lot = RyFxe,un Y,
B: = Ly+ F(x,, U)CY,
L:=cllinB.

Then 1. L=Y, or

2.a) L =Y and 04 int B, or

b) L =Y and Oc¢ int B.

Case 7. Assume that L= Y. Then, by the Hahn-Banach theorem, there
exists a non-zero functional y*€ Y* which belongs to the annihilator of the
space L. Since Bc L and for all x¢ X, ucU

0.F (xy, u)x+ F(x,, u)€B,
hence

(8) ¥y OF (xx, Uy) X+ F(xy, u)) = 0.
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In particular, it follows for w:=u, (since F(x,, u,) = 0) that
Vyr 01F (x4, U, )x) = 0 for all xe X, i.e.,

9) 0 F*(xy, uy)y* = 0.
On the other hand, for x = 0 and all u¢ U from (8) we get
(10) O*, F(xy, u)) = (7%, F(xy, uy)) = 0.

Setting 4:=0¢€1[%, from (9) and (10) we obtain the relations (5)— (7). Thus,
the assertion of the Theorem holds in this case.

Case 2. a) L = Y. We shall show that then int B>0. Indeed, since co-
dim L,< -, the factor space Y/L, is finite-dimensional. We denote by
m:Y ~Y/[L, the canonical mapping. Since the closed linear hull of the set
a(B) coincides with Y, the linear hull of the set a(B) coincides with Y/L,.
Obviously F(x,, U)c Y is a convex set; L, is a subspace, so their algebraic
sum (the set B) is convex. Therefore, the set =(B) is also convex.

Since F(x,, uy) =0, we have 0€x(B). Thus aff =(B) = lin a(B) =
= Y/L,. Hence int n(B)=0.

Since = is a continuous mapping, and

n‘l(n(B)) = B,
we obtain that int B=0.

Assume now that 0¢ int B. By the separation theorem, there exists a
non-zero functional y*¢ Y*, which separates the set Bc Y and the point
0eY, i.e.

@* ¥)=0
for all ye B. This means that
¥, 0.F (xy, ug)x+ F(xy, u))=0
for all xe X and u€ U. Setting in this inequality u: =, we obtain
I*, 01F (Xy, U)x)=0
for all xe€ X, from which
0 F*(xy, uy) y* = 0.
Put x:=0, then
¥, Flxy, 1)) =0 = (7%, F(xy, ty))
holds for all u¢ U. Thus, in this case, as in the preceding one, 2:=0€l%, and
y* are the required Lagrange multipliers.
b) Finally, we assume that
L=Y and O€int B.
Define
S: = {ZENU‘I(\*) u*) = 0}
If § is finite, the proof coincides with that of [1]. Assume that S is infinite.
Further let S:=S U {0}.
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We consider the set Ccl.(S)x Y of all vectors (u, ¥)€l.(S)x Y for
each of which there exists a x€¢ X and a uu€ U such that

1> 0 S { (X, )X+ f (X, 1) = [ (X, 104) (ng),
Y = 01F(xy, ug )X+ F(xy, u)— F(xy, 1),

where u: = (u;)ies.
For the proof of the assertion of the theorem it is enough to verify that

(11 the set C is convex,
(1) int C=0,
(11 04int C.

Indeed, by the separation theorem there exists a non-zero functional
(2, ¥*¥)€IE(S) X Y* such that for all (1, ¥)eC

(12) (o 1+ V%, y)=0.

The %€ l%(S) can not be negative finitelly additive measure. Indeed, if
there is a set AcS, A4(A)<0, then let (¢, y*)€C be such that pf =0 ((€.5).
Further, forevery a€ |1, + [ define
. au?, if e A,

o @, if  i€S\A.
Obviously (u*, y*)€C and

A ) +¥*, %) = jy“dﬂ— j wodi + (vFE, W) =
A S\A
= “f,ltod;t-i- f/t“d).%—(_v*,y‘)},
A S\A
Since f‘u"d}. = (), there is an «=> 1 such that
A
o f,u“dl+ f ,ltod;‘-'f‘(\}"*\)/o) =0,
A s\ A

which contradicts inequality (12).
For arbitrary x¢ X and n¢ U define the sequences

(/'f‘)k(Ni=[*’J[(—\':-::aU*)X'Jrfi(xz:«“)_ff(-\'*,“ﬁc)*' ,’J L ES).
K JkeN

Obviously, for k€N with g% = (uf)ies€1.(S), and v: = 9,F(x,, t)x+
F(x,, u)— F(x,, u,)

(w", y)€C,
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therefore by (12)
(2 1)+ (¥*, y)=0, (kEN).

But 1im (uf)en = (011 (X4, U)X+ fi(X4, 1) —filXy, Uy))ics and the (4, y*)e
€(l. X Y)* continuous, therefore (12) is true for the limit of the sequence
(¥, Y)ken i.e.
f(alfi(x*v X+ [, 1) = fi(xa, uy))iesdd +
(12) ’
+{V¥*, 0, F (Xy, )X + F(xy, 1) — F(xy, ty)) =0.
Let 2€lZ(N,) be an extension of the functional A€1%(S) such that for
an arbitrary AcNy\S 4(A) = 0.
In terms of the Lagrange function, the inequality (12”) means the follo-
wing:

(127 0, -L(X g, Uy 2oy VEIX + LA(Xy, Uy Ay V) — LXKy, Uy, 2y VF) =0,
If xe X then —xe€ X, therefore (127) satisfies only if
N L(Xy, Uy, £, V¥) = 0.

This is assertion (3) of the theorem.
Hence, by (127) for every ue U

L(xy, U, A V)= L(Xy, Uy, 72, y*)=0.

This means that inequality (6) is satisfied in the Theorem.

By the definition of 2¢€%(N,) the requirement (7) is fulfilled.

Hence in order to prove the theorem it is sufficient to verify (117), (117)
and (11"7).

The set C is, obviously, convex.

Now we shall prove that int C. Since O€int B, therefore Ocint =(B).
The space Y/L, is finite-dimensional. Thus there exists a finite number of
points z;, 2,, ..., 2,, of 2(B) whose linear hull coincides with Y/L, such that
"L+Zz +Zm - 0

bmcc z;eB) (j =1, 2, ..., m), there exists a u;eU such that
a(F(x*, u])) = 2, and by the linearity of =,

n[ > Fxy, u])J = 0.
(=1

oo = Sup {f (X 1)) = f i 1) + 110,11 )1},

I=jzm
€S

Set

Ug ={ueU|30;=0, l=j=m, > a;=1 suchthat F(x,,u)=
j=1

m m —
= Z o F(xy, uy), fixg, u)= Zloc]-fi(x*, u;), €S}
j= i=



60 1. MEZEI

(From requirements B) and C) of the smooth-convex problem it follows that
Co<+ o and U,=0.)

In addition put

By: ={yeY|3xek(0)and uc Uysuchthat y = 0,F(xy, U )x + F(xy, u)}.
It is easy to prove that B, is convex.

Since z;€a(F(xy, Ug)) (j =1, ..., m), we have

lin2(F(xg, Uy)) = YLy

It is not hard to see that
OE:z(F(x*, UO)),

thus
aff n(F(x*, UO)) = lin :r(F(x* UO)) = Y/L,.
Therefore
int n(F(x*, UO)) #)
moreover

int (Lo+ F(xy, Ug))=0.

On the other hand o,F(x,, U,k (0) is open in L, Hence we obtain
int By=0.
We set the half-line E.:= {u€R|u=>c,} and let

Cot = ( X Ee) X By,

ieS
The set X E,,cl..(S)is open and int B, 0, therefore
i€S
int C,#0.

We shall prove that C,c C. Indeed, let (u, y)€C,. This means that for
every i€S u;>c¢, and y€B,. Since y€B,, there exist x€k (0) and ucU,
such that y = 0,F(xy, ue)x+ F(x,, u). But k,(0)c X and U,c U, therefore
y can be a second component of an element of C. Hence, it is sufficient to
verify that

1> 01 (X Us)X + [ 1) = [iXso 1) (i€ §)

m
Since ue U,, there are &jzo,j =12, ..., m,such that Z &j = | and
j=1

fi(xpu)= % o filxeuy) €S).
=
Then !
01 (%o U)X + [i(Xg 1) = Xy 103) =110, f (3, )| +

+ max {fu(xy, uy) — filxy, uy)} = i‘,lgm {100f (s )l +

I=j=sm
icS

+ [ up) = filXg ug)} = co=< ;-
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Hence (g, y)€C, i.e. Coc C. Summing up, int Cy=9 and C,cC, there-
fore int C#0, i.e. proposition (11”) is proved.

Finally, we shall prove O¢int C. Let us assume that this is false, namely
there exists a neighbourhood kzs(0)c/.(S)X Y with kos(0)cC. Let

pi:=—2>8(i€S)and u: = (u,)ics. Obviously (u, 0)€C. From the last rela-
tion it follows that there exist x,€ X and 1,€ U such that

(13) — 8= 0,S (X, Ug)Xo + [i(Xyo o) — [i(Xso Ui) (i€9)

and

(14) 0 = 01F (Xy, uy)xo + F(Xy, tg) — F(xy, Uy).

Let us fix e=0 and consider the following function:
(F: XXRm+1-Y
F(Xy g 2y, oy 0) T = FQo 2, 1y) + o‘O(F(X* +X, Up) — Fxy +x, Ll*)) +

m
+e D af(F(xe+x,u)) = F(xy+X, uy)).
j=1

By the smoothness conditions there exists a neighbourhood k(x,)c X such
that at every point (X, ag, a;, ..., @,)€(k(xs)—X,) X R™*+1 the function
F is differentiable, (F’ is continuous at the point (0,0, ..., 0)e X X R™*1
and

F0,0, ., 0)(X, gy oy - - - %) = Dy F (X U)X +
13) + a(F (X Ug) — F (g, Uy)) +

+e % o (F (X 1)) — F (Xy Uy))-

j=1
The function # has the following properties
1. (£(0,0, ...,0) = 0, indeed,
(F(0,0, ...,0) = F(xy, uy) = 0.
2. Rz ,0,...,00=Y.

First, we shall prove Rz, o, .... 0y B,. For all y € B, there exist x€k,;(0)c
c X and u€ U, such that

y= 31F(X*,,‘u*))—C+F(x*, E)-

w; =1, such

Ms

Since u€ U, there exist numbers ;=0 (j = 1, ..., m),

I
—_

J
that

m
F(x4,u) = Z ?ijF(x*, uj).
j=1
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o,
Then, for x: =X, ¢y: = 0, 2;: = LoG=1,...,m
&

F0,0, .., 0) (X, @y 2y e, 3y,) = 0 F (X, )X+
m

"
+0- (F(xy, t1g) = F(xy, 114)) + & > -—FJ-(F(x*, 1)) = F(xy, ty)) = ¥,
j=1e

that is y€ R0, 0, ..., 0)- Since int By=0,
ReF,0,...,00 =Y.
3. There exists an x’€ X such that
F0,0, ...,0)(xp+ex, 1,1, ..., 1) =0.
Indeed, by (14)
j":l F(Xa 1)) € Ly = Ry, unn
i

therefore there exists a (- x’)¢ X such that

(16) > F(xg, 1)) = —0,F(xy, u)X.
j=1
By (15) !
F0,0, .. ,0)xoF+ex’, 1, . 1) = 0, F(Xy, tg)(Xe+ex’)+
+ F(Xyy t1g) = F (X tg) +& D (Fxy, 1)) = F(xy, 1)) =

j=1
m
= 07 F(xy, Uy)xo+ F(xy, U,) +e[81F(x*, U)X + D F(xy, 1)) |-
j=1
The sum ot the first two terms is equal to zero by (14) and the sum in the
brackets also equals to zero by (16). Hence the vector (x,+ex’, 1, ..., )€ X X
X R™+*1 belongs to the kernel of the operator . #'(0, 0, ..., 0).

The function (F satisfies the conditions of Ljusternik theorem at the
point (0,0, ..., 0)e X X R™*1 therefore the tangent space of the set

M = {(x, o0y, - .y 0,)EX X RME(X, 2y, 0y, .., 2,) = 0}
is equal to the kernel of the operator . 7(0, 0, ..., 0), i.c.
TM@O,0, ...,0) = Ker (0, 0, ..., 0).

Then there exists an ¢,>0 (generally speaking, depends on ¢) and a
function
[ — €0 €0l 21— (X(t), 2o(F), 2(t), - - ., %,(1)) EX X R™ 1,

im [t[» Fol+ 3 13,01| =0,
j=1
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for which at all point te[—¢,, ¢,] we have
0,0, ...,0)+t(xo+ex’, 1, ..., 1)+ HE(E), 2(0), - - -, %, () €M,
that is
F(Hxo + e+ XWO), 11+ 7(D), - -, 11+ &,(D)) = 0.

This result holds for all e=0. _
We now choose an ¢=0 such that for every i€S

€D (o 1+ S (it 1)~ f (i 1)) = &
= |

Y
\ 2
holds.
Now, we consider the functions for all (€S

A’, . XXRm+l _,R
.(‘s’i('\" Py Xy, o lm) L= f‘v(.\’*—{-,\‘, ”*)—*'

m
+ag([i(X + X0 10) = [ilXg + X, uy)) + & > w [ S + X, 1))~ [i(X + X, 1))
=

Obviously,

20,0, ..., 0) = [Jo¥w ) i P=0
0, if i€S,

the functions g, (i € S) are continuously differentiable at the point (0,0, ..., 0)
and
£1(0,0, ..., 0) (x, atgy g, + - oy ) = alfi(x*’ Ug)X+

+ag(f (X o) = FilX s ) + £ i o[ S i 1)) = f Xy 114)]

j=1
By the choice of ¢, from (13) and (16) it follows

gi10,0, ..., 0)(xo+ex’, 1, ..o, 1) = 01 (o )X + [ i tho) = F Xy ) +
(17) +F[31f,-(x*,- U )x” + i [fi(xx, ”j)_fi(x*» ”*)]] =
=

8482 = =82 (i€S).

By the Lagrange mean-value theorein there exists a vector (&, 8), 91, ...
.., 91)EX X R™H1 (depending on t), for which

gi(t(xo+ex’ +X(1), (1 +&o(0), - - -, (1 + am(t))) =
=g,0,0,...,0) +1g/(&, 85, 9%, . . ., L) (Xo+ &X' +X(t), 1 + &), - - ., | + (D))
for all t€[—e¢,, €,] and i€S.
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It is easy to see from (17) that there exists a y=0 such that for every
te]0, [

g;(sl! 3% "%1 x .,79;'”)()(0—{- ex’ +X(), 1 + &o(t)r ool +°N‘m(t)) = _‘g‘

also holds. From this we obtain

) gl(t(xo+ X+ X(M), 11 +agd)), - - -, t(1 + @,(1))) <
18
<g,~(0,0,--.,0)-t~3, te]0,y[, i€S.

Define the function
10, [3t1—x(t): = x4+ 1(xo+ X +X(t)) € X.
Obviously, lim (f1—x(f)) = 0. We can assume that y=0 is sufficiently
0
small. Then all t€ ]0, [ satisfy

t[l Fagl) +e ; (1 +&j(t))]s 1

J
l1+ay()=0, 1+a(t)=0, ..., 1 +a,(#)=0.

For such € ]0, y[, according to the condition C) of the smooth-convex
probleni, there exists an element u(f)€ U such that the following relations
hold:

F(x(t), u(t)) = [1 — (1 + ag(f)) —et i (1+a j(t))]F(x(t), Ug) +
(4 O) F (), o) + et 3 (1 +5(0) Fx(t), 1)) =
= F(t(xo+ ex+ X)), t(1 +&o0)), 1(1 +3,(1)), - - -, 11 +5,(1))) = O,

£ty u(t)) s[l (1 4 Gglt)) — et i (1+ aja))]fi(x(t),u*) +

FH 4 GOV (), 1) + et S (1HE ) (x(D), 1) =
=1

= gi(t(xo+ex’ + X)), 11 +30), (1 + (D), -, 11 + () (€S
From these relations and from (18) it follows that, for every t€]0, y[
Jo(x(@), u(t)) <folxs, 114),
F(x(t), u(t)) = 0
fi(x(), u(t)) <0, i€S.
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Finally, it is obvious that
lim sup (£1--f,(x(t), (1)) =/ i(Xs, ux)<0

for ieN\S. Thus, if a t€]0, y[, then (x(f), u(f))€ X X U is an admissible ele-
ment of our problem, but f,(x(f), u(t)) <fo(Xx, tx). This means that the point
(x4, Uy) cannot be a local minimum point. It is a contradiction. Therefore,
the assumption O€int C was false, and the relation (11””) holds.

The theorem has been proved. (7

I wish to thank A. Késa and Z. Varga for helpful criticisms and sugges-
tions.
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