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1. Introduction. In this paper, we investigate the approximate solution
of the non-linear differential equation

(1.1) Y=y (x);yE) (-l=x=I)
with the boundary values

Y1) =a;  Y() =
y(=1) =Bo; y(=1) =68

The exact solution of this non-linear ordinary differential equation, if it
exists, cannot always be found. Faced with this difficulty, mathematicians
resorted to numerical methods for approximating the solutions e.g. Runge-
Kutta, Euler, Galerkin, Adam.

Some mathematicians applied the interpolation in their methods appro-
ximating the solution. Adamn applied the interpolation only in some of his
methods. In his spline interpolation methods T. Fawzy [3] used the spline
functions which are not polynomiatls over the whole given interval. K. Fanta
and O. Kis applied the Hermite interpolation in their method for the solu-
tion approximation [2]. They used the Green’s function which is not possible
to calculate numerically.

In this paper, we apply the Hermite interpolation to obtain a method for
approximating the solution of (1.1—2). Our method is economical in that
we don’t use the Green’s function.

Suppose that f(x, y(x)-y'(x))€ Cr=3([— I,1] XR XR) where r=2 fixed
integer, we instantly assume that f(x, ¥(x), y’(x)) satisfies the Lipschitz
condition

(1.3) |F D, Y1 y1) = SO Yoo v2)| = L(Y1— Yol + [ V1 —121)

for all xe[—1,1] and all y, y{, ¥,, ¥s, in R. L is the Lipschitz constant and
g=0,1,2, ..., r—2.

(1.2)
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Let y(x) be the unique solution of (1.1—2) for all xe[—1,1]. Suppose
that we have the following triangular matrix

(1.4) AT {x, nfide (n=1,2,3,...),
where
(1.3) —l=X4 n<Xpn< - <Xeit,n=Xpyn<...<X ,=<X =1,
and
(1.6) x.,_nzcosgv:rln (I=v=n)
2n

are the roots of the Chebyshev polynomial of the first kind given by
(1.7) T,(x) =cos (narccosx) (n=1 23, ...).

Our method for approximating the solution of (1.1—2) is carried into
two processes, in the first process we use the method of step by step integra-
tion to obtain the approximate real values ¥, » where

(18) _vr,n%yr,n = _}'(X;v,n) (l SVS”),

i .e. the approximate values of y(x) at the nodal points.

In the second process we interpolate the real values in (1.8) at the nodal
points which are given by (1.4—6) and obtain an interpolation process which
we prove converges uniformly with the exact solution of (1.1 —2) in the clo-
sed interval [—1,1].

If there is no danger of misunderstanding we drop the second index in
our notations whenever possible.

2. Preliminaries. In this section we state the definitions and formulae
needed for the proofs in the rest of the paper.
We use the fundamental Lagrange interpolation polynomial

T x
2.1 L(x) = —- e - l =v:=n),
(2.1 (x) = T () —x) ( n)

where x,, , and T ,(x) are defined in (1.6—7). It is obvious that

2.2
2.2) Tix) = i

L. Fejér [4] proved that the following inequalities, for the Lebesgue
function, are true for all xe[—1,1]

(2.3) Z B(x)=2
which implies

(2.4) 10| =V2
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and

(2.5) logn < max Z ]l(x)]«——logn

- ]/7-5 —l=x=1,

For any polynomial g,(x) of real coefficients and of degree k, S. Bern-
stein and Markov have proved that the following inequalitites are true
respectively

(2.6) 41 = 01— max g, ().
(l ) 92 _1=x=1
2.7 1g@(x)| = 0(1)n2 max |g(x)|.
—1Isx=1

Theorem 2.1 (1. E. Gopengaus) [5]. Let f(x) be an arbitrary real function
Jor which fe C@ ([—1, 1]). Then there exists a polynomial G, (x; f) of degree
at most m (m=4q+5) and such that

. 1ox2 )
@8 1GR0s )= O] = Ko [',L;f‘”][—'{-l—mi] 0=i=q

is true for all ¢ =0, fixed integer and for all xe[—1,1]. w(d; f@) is the modulus
of continuity of f@(x). 0O

In the following, we describe the two processes for obtaining the method
of solution approximation.

3. First approximation process. Considering the non-linear differential
equation (1.1), we assume that f(x; y(x); y'(x))€C"=2([—1,1] XR XR)
and satisfies the Lipschitz condition (1.3). Suppose that the boundary con-
ditions are as given in (1.2). Let us write them as follows

(1) =y = x; yih =y =,
V(=1 = Va1 = B y’(_l):yn+1:ﬂ1'
Thus we can integrate (1.1) between x, and x where x€[x,;1, X,]

[O =y = [i){] — 2] and obtain

(3.2) V) = 7o+ [ 15 vty vt

3.1

and
¥ =yt yie=x)+ [ f Sl vy v+
(3.3) o
+ [ 15 yw); v/ av]dudt.
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It is obvious that y(x) and y’(x) can have the following Taylor’s expan-
sions respectively

r—=1 _(J)
(3.4) ¥ = 2, % (x-xy 1+ X0y,

r=2_ (j+1) F
(3.5) y () = 2P oy + ey
where

Xpp1<X<t, fo<X, [05v5[£]—2].
2

Given
(3.6) Yo=p Yo=201n Vny1 =P80 Ynr1=5
we can obtain simply from (1.1) the following values
(3.7) W=0a; ¥Y1=8 (5=2,3,...,r)

Thus we can adopt the following definitions

)-)(()S) _d:ef (5)

Yoo = xg

(38) (S=011727'~-;r)
i 2 = g,

and

(3.9) V) 2L 10 R 7o+ [ 1 YR vE@ar),

where y:k(x) and yv ’(x) are the approximated functions given by using the
appr0x1mate values 3" instead of y, in the two series (2.4 — NG =01,

, 1) ie.
* : yﬁ”
(3.10) ys(x) = Z = (e—xy
r— 1y(1+1)
3.11) yi(x) = Z —~-j~—»---(x x.)! [0<v<[ ] ]
J=
Integrating (3.9) between x, and x,41 [051}5[---; ]—2] we get
Xyt 1
(3.12) Yot = i+ f @y W),

and
X4

(B13)  Prst = A Prt — )+ f f (155 yEu); yE* () dudt
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where
(3.14) Y e) = 7o+ [ £ yH@); v @)de.

On the other hand, we consider the sub-interval [x,—,.+1, Xn—,] and
have the following approximated Taylor’s expansions

(3.15) Vhovai(x) = Zy— (X = Xnoap1)
J=
‘v"t"l
(3.16) VEL,1(x) = ,Zo ]f (X =Xn_ys1)l.
Define
(3.17) V() 2L f (6 yrs 1 (X); Y B*1(X))
where

(3.18) yRxa(X) = yaov + f f(t Yr—ve1(t); YAZo1(D))dt

Xn—y+1

OsvS[ﬂ].
2

Integrating (3.17) between Xxn_,;1 and xn_, [IOS])S[u;L] we obtain

and

the following approximate values

Xn—y
(3.19) Voo = Vhownr+ [ J( VA0 yES (),
Xn—y+1
and ) )
(3.20) Yn—y = yn-v+l + Yr—vs1(Xn—y —Xn—yp1) +

n v

+ f ./ J(u; yaovii(u); yA%,  (u))dudt,
*n—v+1Xn—vt+1
To estimate the error between the exact and the approximate values

of the solution of (1.1) at the non-equidistant nodal points {x.}v=0, we follow
the same method of proof carried out by T. Fawzy in [3] in detall The only
difference is that we have here n = |x,;,—x,| increasing from the two boun-
daries towards the origin. For x, defined in (1.6)

3.21) X1 —%,| = 0(1)[1ELJ [osvg[%]—z]
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and from the symmetry we have

(3.22) R 0(1)[7’—;—2-) [osvs[’zi]—l].

Thus we can easily attain the following results.

Theorem 3.1. The error of the approximated values j/f.s) to the exact values

yf,s) corresponding to the nodal points (1.4 —6) is given as follows
(3.23) Py = o<1><“[ ; W" o )
n n®
n
orall 1 =py=|—|—1,
prai=r=[3]
and
—(s s | 2y

Jor allOsvs[g], s=0,1,2,...,r and r=2 fixed integer. ]

4. The first interpolation. Suppose that we have the triangular matrix
(1.4) whose elements are defined by (1.5—6). Suppose that f(x;y(x);y’(x))in
(1.1)satisfies the Lipschitzcondition (1.3)and f(x; y(x);y"(x)) € C*=>([ - 1,1] X
XR X R). Hence there exists a unique solution for (1.1—2). Let this solution
be y(x) (= 1=x=1).

Corresponding to the triangular matrix (1.4), suppose we have the fol-
lowing matrices

4.1) Mm%,
where
2 m, =1 (I=v=n)
.d) My =M, =2
an
(4.3) Y: s (O=s=m,—1; O=v=n+1),
where

YOx) = 2.

Hence there exists a unique Hermite interpolation polynomial
H, 4(x; Y; A) of degree at most n+ 3 [7] which satisfies the following

Hy (x5 V5 A) =y, (I=v=n),
(44) Ho(1 V5 A) = 39(1) = 38 — o,

© © © (s=0,1)
Hyis(—1; V5 A) =y (= 1) = yni1 = B
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[t is easy to show that the explicit form of this interpolation process is as
follows

Hpig(6, Y5 A) — ol o(X) + 2170, 1(X) + Bor o(X) + B1r o, 1(X) +

(4.5) AR
+Z| yv[--l _§] 1(x),
where
4.6)  ryx) = {1 [; +11‘-’](,\‘ 1y f) (1 +n‘-’)(x—-1)2}lf-’frn( ),

@4.7) rpax) = {l + [;— +n2J(x+ 1) (] +1?)(x -+ 1)? } —x T

‘2 n(-])
1 of . __,'?Cﬁ
@.8) o 1(X) = {(x— )+ 2(x—1)} LT,
_ _ b o| =X T
@9 e = far - E B
and
(4.10) l,.(x):—z’lg)— (Il=v=nmn=12,3,...)

T/ (0)(x —x,)

the well known Lagrange fundamental polynomial of interpolation.
In the following lemma we obtain a useful result for the Lebesque func-
tion.

Lemma 4.4. Let 1.(x) be the polynomial defined in (4.10). Then for all
x€[—1,1] the inequality
n l
4.11) Z~—-—|l(x)| = 0(1) log n,

r=1 1 -
holds true. O

Proof. Let x€[x;.4, x;] (O=j=n). Hence it is obvious from (1.6) that

72

4.12) L—xt <1 -2 = ()L,
n2

(4.13) !;x“_.—o(l) for v=7j,j+1,

1 —x2
and
oy d=rllitr =1l gor 1 oyzjoy,
n:

4.14) |x—x,| = ¢ 0(1) L

—v+ 1] |j+v] for j+2svs[£]
2 2 ’

= (n=»)+11|j+(@—)] L2
l0(1) for [2]+|_ =n.

n2
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Now, we have
n j=1 j+1 [%] n
(4.15) Z ———|l( )| = Z Z Z .
=1 =1 =] =i+2 v—[;]-}»l

Thus, using (1.6—7), (2.2) and (4.10) into (4.15), we get the following
L
4.16 L(x)| =
(4.16) Zl I I ()| Z e
It is obvious when (4.12) and (4.14) are eliminated in (4.16) we get

i=1 1= j2
2" .
A1- (2v—1)|]—v||]+v 1|

-

(ZV—1)|J—V|

x2

—x2 |x —x,]| )

(4.17)

Ifv 2—2— then (4.17) reduces to

(4.18) S22 = oy’ — o = o1y logn
' [y MO0 2 = D e

v=1

If v<é, then (4.17) reduces to

4.19) S @ = o)’ = 0(1) log
@. 2Ty MOT=0M 2y = 0 g

r=1

Similarly if we use (4.12) and (4.14) in (4.16), we get

5l ! -
e Ilv(X)l = 0(1) Z ) =

@4.20) "+ - @ = )j—v+ 1] |j+v]
= 0(1 )[n] ] - —— = 0(1) log n,
and =@ =Dlj-v+1]
>l =
4.21) <Lzl

Y

n J? oD oen,
,=[§]+1 @n=2v+D|j—(n—»)+1]]j+ (1 —»)| (1) log n
2
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It is easy to show from (4.13) and (2.4) that

Jjrl 1—x

4.22 —-
(4.22) 2T v

v=j

Thus the inequalities (4.18—22) when added give the proof of the
lemma. O

Considering the Hermite interpolation process given by (4.5— 10), we
prove the following.

Theorem 4.1. Lef y(x)€ CO)([— 1,1]); then for all xe[—1,1]

423 [HDa0 V5 A~y = 0(1>w[—~‘»; y“’]—'igi,
n+3 nr-s

holds true, where n=10, r=2, fixed integer s = 0, 1, 2 and w(d; y") is the
modulus of continuity of y(x). 0O

Proof. Let G,.,(x; y) be the Gopengaus polynomial for the function
¥ (x) and of degree n+3 at most. It is known from (4.5) that

(4.24) Gn+3(X;y(x)) = Hpa(x; Y5 A)
where
(4.25) Y {Gpis(x); Gras(1); Gris(— 1))
Therefore using (4.5) and (4.24), we obtain
426)  [HDa(6 V5 A) = Gika(x; y(0)| = (1 = 2*)gns1(0))
where
n 2
(4.27) Bnr1(X) = 2 [Gn+1(xv)—%]ﬁ_ 2y [(x)
r=1
ands =0,1,2.
Using Bernstein inequality (2.6) we can show simply that
(4.28) {1 =x*)gn 1 ()] = O(D)n*_max [g,.,(x).
Using (2.8) into (4.27), we can easily obtain
1
(C PR
8] = O() = (1 =x) ¥ =) =
(4.29) -

foralln=10, r=2.

4 ANNALES Sectio Computatorica — Tomus V.
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Using Lemma 4.1 into (4.29), we achieve

1
o] —-— ; y(r)]
(4.30) |gn1(X)| = 0(1)—=—- T log n.

Substituting (4.30) into (4.28) and the result into (4.26), we obtain

w[_l,,5 y(f)J
@31y |H50: ¥; A) = GELs(x; v(x))| = 0(1)»,”,’i__ 2 logn

—-S

for all n=10, r=2 fixed integer and s = 0, 1, 2.
Using (2.8) together with (4.31) into the R.H.S. of the triangular ine-
quality
HLa(x Vi A) -y ()| =

=|HY 306 V; A) = Ga(x; y()) +1GEL3(x) — v

- yn
[n+3 Y J

for all n=10, r=2 fixed integer and s = 0, 1, 2. 7]

we obtain

(4.32) H 306 Y5 A) =y )| = 0(1)— log n

5. Second interpolation — The second approximation process. Using
the method of approximation given in Section 3, in (3.13) and (3.20) together
with the definition (3.8), we obtain

(5.1) Y i Yo Vnedido (1= 1,2,3,...),

which corresponds to the matrix defined by (1.4—7). Hence we can obtain a

Hermite interpolation polynomial . 4(x; Y, A)of degree 11+ 3 at most which
satisfies

Hpps(s Y5 A) = Yoxye (I=v=n),
(5.2) Hupo Y5 A) = ¥ )0 = 0y (s =0,1),
Horo — V5 4) =950, Ly = 8, (s =0,1).
It is not difficult to show the explicit form of this polynomial to be

(.3) H,,+3(x;7; A) = agro(X) + o7, 1(X) + Borna1(X) + Birngr, 1(X) +
. o

+ Z yu[—l—i—]zl (X),

where ro(x), rns1(X), 1o, 1(X), 1, +11(x) and [,(x) respectively are given by
(4.6-10
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Considering (5.3) we prove the convergence of the interpolation poly-

nomial H,,4(x; Y, A) to the exact solution of (1.1 —2). An estimate order for
the approximation is given too.

Theorem 5.1. Let y(x) be the exact solution of the differential equation
given in (1.1=2). Let f(x, y, y)ECU=([—1,1] XR XR) which satisfies the
Lipschitz condition (1.3). Then for all xe[—1,1] and all n=10 the following
inequality

(5.4) HS, o V5 A) = ¥ = O(I)w[f— <'>] log 1t
nr S
holds true. The r=2 fixed integer, n=10and s = 0, 1, 2.
Ify"(x)eLipu (O=u=1), then
]0{, n

(5.5) IH!, 40 Y A) =y (x) = 0(1)-

for all y(x)e CO([- 1,1y and all xe[ -1,1]. O
Remark. [t is obvious from (5.3) that
HRA(£15Y;4) =y =0 (s=0,1).
Proof. It is obvious from (4.10) and (5.3) that

(5.6) H 400V A) = HO (5 V5 A) = {(1—x)ga (0},
where s = (), I, 2 and
(5.7) Cns1(X) = D (Ve=¥2) (-- -;)7- L(x).

r=1

Using (3.23—24) together with (1.6), we simply reduce (5.7) to give

) _1 ]/(")
n

n
(5.8) e ()] = 0CD) 7~ Z Il(X)|
It is obvious when we use (4.11) into (5.8) we obtain for all r=2 the
following
w[l §}’(')J
n
(5.9) [gn 1] = 0= —= log .

Differentiating the R.H.S. of (5.6) and then using Bernstein inequality
(2.6), we simply obtain

(.10) A5 Y5 A) = S0 ¥ A) = O(1)n® max |gnsi(¥)],
—1=sx=1
wheres = 0, 1, 2.

4%
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Substituting (5.9) into (5.10), we obtain

(G.11)  |HD (5 Y; A)—Ha(x; V5 A)| = (e [ (,,] logn
l

nr N
for all r =2, fixed integer and s = O, 1, 2.
Using (4.23) and (5.11) into the triangular inequality

[H 306 Y5 A) —yO0)| = [HSa(x; V; A) — Hia(x; V5 A) +
+HR 0, ¥V A)—yO@)| (5 =10,1,2),
we obtain the proof of (5.4).
If y”"(x)eLip p (O=p=1), then we have
(.13) w[i; y”] ~ o).
n n

Hence (5.4) and (5.13) prove (5.5). O
In the following theorem, we prove that the approximate solution (5.3)
satisfies the differential equation (1.1).

Theorem 5.2. Let fe CU=2([—1,1]X R XR) where r=2, a fixed integer
and let it satisfy the Lipschitz condition (1.3). Then for all x¢[—1,1], n=10

(5.12)

log n

(5.14)  [His(iV; A)— f”(x;ﬁn+1(x),Hn+1(x)l—O(I)w[n m] e

holds true.
If y"(x)eLipp (O<u=<1), then for feC([—1,1]XRXR) and all
x€[—1,1] the inequality

(5.15)  |Hnva(x; V5 A) = f(x; Hns(x);Hna()| = 0(1) —
holds true. 0O

log rl

Proof. Let us define

(5.16) ya(®) = f(x Hn+3(x) H, n+a(X))-
It is obvious that

G.17) [Hr1s(; Y5 A) = ya@)| = [H7 1o V5 A) =y ()] + ]y () = ya0)]-
It is obvious from (1.1), (1.3) and (5.14) that
(%) — yn(0)| = L{Hn 1 3(x; ¥; A)—y(0)| +
[Hnya(x; V5 A) =y (1)),
Using (5.4) into (5.18), we obtain for f€ C¢=» ([—1,1] XR XR)
» 1 log n
(5.19) 1Y) - 7,)| = 0<1)w[~n-;y<r>]i

for all n=10 and r=2.

(5.18)

nr-1
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Substituting (5.19) and (5.4) into (5.17), we obtain the proof of (5.14).
The inequalitites (5.13) and (5.14) simply give the proof of (5.15) for
JEC([-1,1] XRXR)and y"€Lip u O<p=<1). O

Remark 1. We can use the roots of the second kind Chebyshev polynomial

(5.20) X, = COS 7 (l=v=n)

n+1

as the nodal points for our interpolation. The results which we will abtain will
be the same as those given in (5.4—5) and (5.15— 16).

Remark 2. Any method of integration which gives y, such that
(5.21) o=yl = O(I)w[l-;w][i] (I=v=n)
n n?

can be used in the Hermite interpolation process that approximates the solution
of the non-linear differential equation (1.1—2).

Remark 3. If we impose a change on the calculated values y, to the arbi-
trary real values y¥(1 <=v=<n) in such a way that

(5.22) |, — y¥| = 0(1)(1,[1_; ym][L]',
n

n?

then our method of approximation given by (5.3) shows that it is stable for all
r=2. In the case when r = 2 the method is stable only if condition (4.22) is
satisfied and y"(x)eLip u O<p=1).
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