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It is known that in one-dimensional regular problems of calculus of
variations the solutions of the Euler-Lagrange differential equation provide
a relative extremum for the corresponding functional, at least “in small”.
Concerning this it is worth pointing out the following interesting fact. From
the classical conditions of calculus of variations (see [1], [2] and [5]) it fol-
lows that if we take certain rather substantial extensions of a functional de-
fined on twice continuously differentiable functions then the extensions take
a relative extremum at the mentioned solutions of the Euler-Lagrange dif-
ferential equations as well. Of course, this does not mean that a functional
defined on a rather general set (consisting e.g. of piece-wise smooth or ab-
solutely continuous functions) can attain an extremum only on “nice”,
namely twice continuously differentiable functions. There exist well-known
examiples for functionals attaining extrema on piece-wise smooth functions
(see [5]). For this reason, it is important to determine the types of functio-
nals which can attain their extrema only on the solutions of the Euler-Lag-
range differential equation. This is important from the point of view of
numerical mathematics, too, because in this case any function providing an
extremum can be obtained via solving a differential equation.

In this field, the first essential result is due to Hilbert (see [3]). He pro-
ved that if we extend a one-dimensional regular functional defined on twice
continuously differentiable functions in such a way that we “admit” once
continuously differentiable functions as well, then this extension can not
have any new extremal function. Hilbert’s result can be generalized in se-
veral ways. In the present paper we give the following plausible generali-
zation. The domain of the functional is defined as the largest class of functions
where the admissible continuous curves are supposed to have both left and
right hand tangents at each point.

For the present treatment we choose the simplest one-dimensional
non-parametric functionals. However, the results can easily be extended
to more general cases.
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1. Notations and definitions

Let a, b, ¢, d€R, a<b. Denote by C, and C, the classes of all continuous
respectively i times continuously differentiable real functions on [a, b]
(i = 1, 2). Let F be the class of all real functions of first kind defined on
[a, o], i.e., p€ F means that ¢ has a finite right limit at every point of the in-
terval [a, b] and a finite left limit at every point of the interval ]a, b]. The
elements of the set F are called also regulated functions (see [4]). Denote by
F, the set consisting of the integral functions of functions in F. For a g€eF
we shall use the following notation

t
/(p:[ﬂ,b]—-»R, f—»/ 7.

Let j := id[a,5) and for every a€R define
«:[a, b]-R, ti—a.
Now introduce the following sets
M, := {xeFx(a) = ¢, x(b) = d},
M= {xeClx(@ = ¢, x()=d) (i=1,2);
Hy := {x¢Fy[x(a) = x(b) = 0},
H,:= {xeC;|x(a) = x(b) = 0} (i =1, 2).
For any function x€ FF; define
1 .
X 1= (J, x, x).
Let f: R®*-~R be twice continuously differentiable and use the follo-
wing convention
1 1
fx:=fox (X€F)).
Denote by f.; the partial derivative function of f with respect to the i-th
variable and by f.; the second partial derivative function of f with respect
to the i-th and k-th variables (i, k = 1, 2, 3).
Let @ and y be real functions the domains of which are equal to the in-
terval [a, b] except for an at most countable set. We shall write

=9
if there exists an at most countable set Ac[a, b] such that
p(f) = w(t) (te[a, D)\A).
Now for i = 1, 2, 3 define

b
J.:M.~R, xl»ff:lc.
a
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Definition 1. The function fis said to be (positively) regular if for every

(t, s, u)eR®
f.33 (t, S, ll)>0.
Definition 2. Let i = 0, 1, 2 and p€ M, be fixed. The functional

5,4,:H ~R, hi— fb[(f.géa)h + (feé)h']

is called the first variation of 74, corresponding to ¢.

Definition 3. If for an i = 0, 1, 2 and ¢€ M, the range of §,(/; is the set
{o} then ¢ is called a stationary function of ¢f,. The set of all stationary func-
tions of the functional 7, is denoted by the symbol

Stat f, (i =0, 1, 2).

Definition 4. Define for any ¢, p€ F,
o(g, ) = max |p(f) —p(f)| + sup
te[a, b] tefa, b[

¢'(xX+0)—y'(x+0)| +
+ sup |¢'(x—o0) —y'(x—0)|.
tcla,'b]

It is easy to see that p is a metrics on F;.

Definition 5. Fix i = 0, 1, 2. We shall say that ¢/, attains a relative weak
minimum on the function ¢ €M, if there exists a positive real number ¢ such
that for every we M, with o(p, y) <e we have

4 (w)="4q).
2. Results

Theorem 1 (Du Bois — Reymond). Let meF and suppose that for every
heH, '

b
(1) f mh’ = 0.
a
Then there exists an « €R such that
2) m = g.

The theorem can be proved in the usual way (see [2], [5]): for an appro-
priate « €R the function

h: = f(m—gc)

belongs to H,. Then by (1) we get

b b b
[mit = [(m—-a) = [(m-ay =o0.
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Hence, taking into account that (m—a«)?* is a nonnegative function of first
kind, it follows that m is equal to zero at any of its points of continuity (i.e.
except for an at most countable set, see [4] and [7]). So (2) holds.

Fix the number i = 0, 1, 2 and suppose that ¢/, attains a relative weak
minimum on some ¢€M,. Then, as it is easy to see, the Gateaux derivative
of the functional ¢, is equal to zero in any direction he€ H, (see [5], [6]). It
can be shown in the usual way that this derivative is 6,77,(h). So

6¢gi(h) =0 (hEHi)'
This result can also be formulated in the following way.

Theorem 2. Fix i = 0, 1, 2 and suppose that (J, attains a relative weak
minimum on ¢ €M,;. Then

q € Stat 7f,.

Theorem 3 (Euler — Lagrange). ¢ € Stat 74, if and only if there exists an
a € R such that

.1 o
) fop = [Lap+e
Proof. Suppose that (3) holds. Then for any he H,
‘ b
1 1
@ aut) = [ (sl ()]

If we partially integrate the first member then by (3) we obtain that
b

1 1
boFallt) = f [- f f-z(p+f~37>]h’ ~ 0,
a a
that is ¢ € Stat ¢J,.

Conversely, suppose that ¢¢ Stat ¢/, i.e. the right-hand side of (4) is
zero for any he H,. Then, like above, by partial integration we get that

f(f.y‘p— f for)t =0 (heH,).

Hence, by Theorem 1, is follows that (3) holds.
We note that from classical results of calculus of variations (see [2],
[5]) it follows that

a) g€ Stat ¢f, if and only if

5) fop—\fap) =0,
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b) @€ Stat (7, if and only if

1 1 1 1
(6) Jfop=F 10— a9 ¢"—f.a3p-¢" = 0.

Theorem 4 (Weierstrass— Erdmann). Let @€ Stat (J,. Then for every
t€ ]a, b[ we have

M) S -3t 9(t), @'t = 0)) = [.5(t, g(t), ¢'(t + 0)).
Proof. Since ¢ Stat (7, then relation (3) holds. The function
1
f Jopta

is continuous at each point of [a, b] so by the definition of the relation = we
get

. 1 . 1
hrgf.yp = hrronf.3¢ (te]la, b).
t— t4

Since fis continuous we have
L1 1
Follime) = 7 5(img) (e la, b
' t—-0 t+0

If we rewrite the last equality in details then we obtain just the “corner
condition” (7).

Theorem 5. Let ¢ ¢ Stat ¢, and suppose that for some t€ Ja, b the function
(8) R>ui—f.s(t, ¢(t), u) €R
is strictly monotone. Then ¢ is continuously differentiable at t.

Proof. Since p€ F, then ¢’ has both left and right limit at ¢. Hence ¢ is
continuously differentiable at ¢ if and only if

¢’'(t=0) = ¢’(t+0).

Suppose the contrary, ¢’(t—0)¢’(t+0). Then the fact that the function
(8) is strictly monotone implies that

st p(8), ¢'(t = 0)) = f.5(t, 9(2), ¢'(t - 0))
in contradiction to equality (7). [
Theorem 6 (Hilbert). If f is regular then
Stat ¢, = Stat ¢},.

For the proof see e.g. [5].
After the above preparation we can announce the following result.

3 ANNALES Sectio Computatorica — Tomus V.
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Theorem 7. If f is regular then
Stat 7}, = Stat (},.
Proof. By Hilbert’s theorem it is enough to verify that
Stat ¢J, = Stat 7},.
Here clearly Stat (f,c Stat ¢f,, so it is enough to see that
Stat ¢j,cStat ¢f,.

Let g€ Stat (},. Since f.33 is a positive function then for any t€]a, b[
the corresponding function (8) is strictly monotone increasing. Hence, by
Theorem 5, it follows that ¢ is continuously differentiable at any point of
the interval ]a, b[.

A simple calculation shows that ¢ is continuously differentiable at a
as well i.e. we have

9) ¢’(a) = lim ¢’.
Suppose the contrary, let e.g.
(10) ¢’(a)<lim ¢'.
a

Since ¢ is differentiable at a then there exists a function @: [a, b] =R, con-
tinuous at a such that

(11) p()—g(@) = P()(x—a) (xc[a,b])
where ¢’(a) = @(a). On the other hand

(12) s —g@) = [¢ (xela,b]).

From the inequality (10) it follows that there exist a real number A and a
positive number 8 such that on the one hand by (11) we have

(13) p(X)—p(@)<A(x—a) (xcla, a+9]).
On the other hand, by (12)
(14) p(X)—p(a)>A(x—a) (xc]a, a+9]).

(13) and (14) clearly contradict each other, so (9) holds. In quite a similar
way it can be proved that ¢ is continuously differentiable at the point b as
well.

Thus, we have shown that ¢ € C,. This implies that f. 3<;; is a continuous
function defined on [a, b]. The definition of the relation = implies that in
(3) the role of the relation = turns into the *“‘ordinary” relation =,

1 1
foap = ff~z¢+g.
a
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1
By the continuity of f.,¢, the right hand side is differentiable, thus so is the
left-hand side,
1

1
f-z(P—(f-sq?)' = 0.
The last equality just means (see [5]) that g€Stat (/. O

Remark. According to Theorem 2 in case of a regular f the functional
(}, can reach an extremum only on a twice continuously differentiable func-
tion, i.e. the Euler — Lagrange differential function (G) must be satisfied-
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