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Introduction

Several problems in discrete optimization consist in finding the optimal
location of centers in a network. There are several different optimality cri-
teria: we speak of the p-center problem if the objective function to be mi-
nimized is the maximum of the distance of each vertex and the center
closest to it. In the p-median problem we consider sum instead of maximum.
In this paper we discuss the p-center problem.

As the problem is shown to be NP-complete it is reasonable to look for
heuristics. We consider a heuristic of the local search type i.e. given an
approximate solution we try to improve it by searching a certain neighbour-
hood (see Papadimitriou [4]). The algorithm works quite well in practice.
On the other hand its worst-case behaviour is bad: we show it does not
guarantee optimality for any fixed value of the parameters and that the
ratio to the optimal solution is not bounded by any constant. We also give
an example of the phenomenon that enlarging the neighbourhoods searched
does not lead necessarily to a better solution.

The other possible approach is to consider efficiently solvable special
cases. Efficient algorithms are known for trees (see Hakimi — Kariv [2]).
Applying an algorithm for the p-center problem we give a solution to the
following modified problem: find p-centers with the restriction that each
center must belong to a previously specified subtree of the network, where
the subtrees are assumed to be disjoint. The natural interpretation is that it
may be required that some regions must contain a center.

Without the assumption of disjointness there is no polynomial algorithm
known to solve the problem. We conjecture it to be NP-complete.

1. Definitions

A graph G = (V, E) is meant to be undirected, without loops and mul-
tiple edges. We assume that graphs are connected.
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Definition 1. A weighted network is a triple H = (G, a, s), where G is a
graph, a: E—~R* is the edge-weight function, s: V—~R* U{0} is the vertex-
weight function. A network is unweighted if s is constant (in this case we
may assume s=1).

The distance of v, weV in a graph with edge-weights is denoted by
d(v, w).

Definition 2. Let H = (G, a, s) be a weighted network, V,cV, veV.
We define the generalized distance functions

d(v, Vy):= min{d(v, w): weV,}
r(V, V) := max{s(w)-d(w, V,): weV}
Definition 3. V,c V, |V,| = pis a p-center of H if
r(V, Vy) = min {r(V, W):WcV, |W| = p},
and in this case r(V, V,)is the p-radius of H.

Definition 4. Let H = (G, a, s) be a network. V,cV, |V | = pis r-opti-
mal if for every V,cV, |V,| = p, |V,NV,|=p—r

r(V, Vy=r(V, V,)
holds. We define

max {r(V, V,): V, is r-optimal
E,’ p(H) = { ( ]) 1 p }

rp(H) ’
where r,(H) denotes the p-radius of H.

2. A heuristic algorithm for the p-center problem

Input: an unweighted network H = (G, a), p, r.
Output: V,cV, |V,| = p r-optimal solution and the p-radius belonging
to V..
Algorithm: V,:={1, ..., p}, FIX:={l, ..., p-r},
CHANGE := {p—r+1,...,p}.

For FIXcV,, |FIX| = p—rdo
For YcV—-FIX, |Y| =rdo
if r(V, FIXUY)<r(V, V,) then
CHANGE :=Y

V,:= FIXNCHANGE
end
end

It is straightforward to modify this algorithm for the case of weighted
networks.
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Theorem 1. For every p=2, 1<r<p there exists an unweighted network
H = (G, a) and a subset V| = {v,, ..., v,}c Vst

(i) V, is not a p-center of H,
(it) V, is r-optimal,
(iii) V,is not r+1 -optimal.

Furthermore, H can be chosen to be a tree. 0O
Proof. Consider the following unweighted network (where a = 1).
V={,2...,3p},
E ={(,2),(23), ..., 3r—1,3p)}.
The unique p-center of H is
A=1{258, ...,3p—4,3p—1}.
Indeed
(i) If l=y;<yp=<...<y,=<3pand ¥V ={y, 5. .., ¥},
then for i€ V—Y: d(i, Y)=1andsor(V, Y) = maxd(i, V)=1.
(i) r(v, Ay = 1. v

Ais unique. Suppose Y is also a p-center. Then for every ie V—Y d(i, Y)=1.
Hence

n=2
Vee1—Y=3 (I=t=p-1)
ypz3p— 1.

So on the one hand
Vpy=¥1=3p—3,
on the other hand
Vis1—Y=3 (I=t=p-1).
Summing these inequalities

Vp—Y1=3p-3.
Hence y,—y, = 3p—3, thus equality must hold in all these inequalities.
Finally let V,:={1,4,7, ..., 3r+1, 3r+5, ..., 3p—4, 3p—1}. Then we
have r(V, V,) = 2. As the only subset of vertices with a smaller radius is
A and AnV, ={3r+5, ..., 3p—1}, thus A contains r+1 elements not

belongingto V.. O
Next we consider the question whether there is any bound for the ratio
of the value of the solution given by the algorithm and the optimal value.

Theorem 2. For l<r=p—2
sup {E, (H): H is a network} = <. 0O
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Proof. As an r+k-optimal solution is r-optimal as well (if k=0) we
have E, (H)=E,—, ,(H). Thus it is sufficient to show

sup {E,—,, ,(H): H is a network} = o.
Let p be fixed, and K be an arbitrary real number. Consider the network
V={,2...4p-3}
E={1,2-1):k=23, ..., 2p—-1}U
U{tk, k+1): k=2, ..., 4p-3}

a(l,4k—1) = 1 (k=1 ..p=1
a(l,4k+1) = K k=1 ..p-1
a (4k, 4k+1) = 1 (k=1,...,p-1
a (dk+1,4k+2) = 1 k=1 ..p=1
a(dk—2,4k—1) = K k=1..p-1
a(dk—1,4k) = K k=1..p=1

The unique p-center of this network is
Vo ={1,50913,...,4p-3}
and r(V, Vy) = L.

It can be shown that V, = {1, 3,7, 11, ..., 4p—5} is p— 2-optimal. Indeed,
for any set W with a p-radius smaller than K must satisfy
wn{l,3,7,11,...,4p—5} =0 (d(1, W)<K)
W N {4k, 4k + 1, 4k + 2} =0 (d(4k+1,W)<K,

k=1,2...,p=1)

(the intersection of p disjoint sets with W is nonempty and |W| = p) Thus
|[Wn Vy| = 1. Hence changing any p—2 elements of V; we cannot get a
radius smaller than K. Thus sup E;_, ,(H)=K for any K=0. 0O

H

It is natural to suppose that for a network H and p fixed, we get a bet-
ter approximate solution of we increase the value of r i.e. we change more
vertices in each step. (In the terminology of local search algorithms (see
[4]) increasing the value of r means that we are searching a larger neigh-
bourhood at each step.) The following example shows that this intuition is
false.

Example. Let H be the unweighted network given on Figure 1. (the
edge-weights are given encircled). We want to find a 6-centrum of H star-
ting from V, = {1, 2, ..., 6}. If r = 2 we get the 2-optimal solution {1, 2, 3,
9, 10, 13} with radius 6. If r = 1 we get the l-optimal solution {1, 2, 10, 12,
14, 19} with radius 5.



LOCATION PROBLEMS IN GRAPHS 25

Figure 1.

3. A version of the p-center problem for trees

Let be given a network the graph of which is a tree and p disjoint sub-
trees. We want to locate p centers by placing one center in each subtree
optimally. Formally the problem is the following.

Given H = (G, q, s), a network, where G is a tree, G,, ..., G, disjoint
subtrees of (.

Find A = {v, ...v,} with v; a vertex of G, |=i=p s.t. d(V, A) =
= min{d(V, B): B = {w,, ... w,}, w;is avertex of G, for | =i=p}.

The algorithm performs binary search over the possible values of the
radius r, and for a given value of r it locates centers by proceeding towards
the root from the leaves of the tree, controlling distance and the subtrees
given simultaneously. (The principle of processing the tree “inwards” is
similar to the algorithm of Kariv-Hakimi [2]for p-centers.)

Given a network, we choose a root arbitrarily, and denote by v a ver-
tex of it.
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Notation: n(v) — the level of v (the level of the root is 0),
F(v) — the ancestor of v.
H(v) — the subtree with root v.

We shall use the following variables (with their intended meaning):

J(v) — theset of vertices assigned to v (the assignment of vertices is
explained later),

k() the number of vertices in /(v),

T(v) — the vector of distances ol v and the vertices assigired to v,

S(v) — the vector of weights of the vertices assigned to v,

C(v) — the center already selected that is nearest to v,

cv): = d(v, C(v)),

r -- the actual value of the supposed radius,
N -- the actual level processed,

v — the actual vertex processed.

The algorithm.

1. Perform binary search over the set

{d(v, w)-s(v) : v, w vertices of G, v=w}.

[\

. (Initial values) Forallve V:
J):= {v}
k(v):=1
Tv; 1):=0
S; 1) := s(v)
c(V):= o
N := max {n(v): ve V}.
3. If all vertices on level N are processed then:
if N = 0, then go to 1.
else N:= N—1
else v:= an arbitrary unprocessed vertex on level N.

4. If v is the root of a subtree G, then if G, does not contain yet a cen-

ter then v is assigned as center and c(F()) := min {c(F(v)), d(v, F(v))},
go to 3.

5. Let I, := {t: (c(v)+T(v; t))-S(v; t)y=r}.

6. If |1,| = k(v) then ¢(F(v)) := min {c (F(v)), c(v)+d(v, F(v))}
go to 3.

Else if thereis ate{l, ..., k(v)}— I, with
[d(v, F(v))+ T(v; )] - S(v; t)>r then
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if v is a vertex of a subtree G, and G, does not contain yet a center
then v is assigned as center and

¢(F (v)) := min {¢(F (v)), d(v, F(v))}, go to 3.

If vis a vertex of a subtree G, and G; contains a center already or
v is not a vertex of any subtree G, then go to 1. (There is no solution
forr)

7. (Assignment to F(v))
¢(F() := min{c(F(v)), c(v)+d(v, F(v))}
K(F(r)) := K(F@)) + k() — |1}
forte{l,2, ..., k(v)}—1:
S(F(v);.) := S(v; 1)
T(F(v);.) := T(v;t)+d(v, F(v))
and go to 3.
Theorem 3. The algorithm is correct. OJ

Proof. It is sufficient to show that in the case when the algorithm does
not find a solution for a given r, there is no solution for this r.

Let N denote the depth of the tree: The case N = 0O is trivial. In the
case N = 1 the algorithm does not find a solution only, when

(1) every subtree G, is a vertex and there is a vertex ve V with
s)-d(v,U Gj)>r
(2) the depth of a subtree Gj, is I (the other subtrees are leaves) and
a) the algorithm assigned a leaf v, of G;, as a center and there is a vertex

veV with
s(v)-d('U_ GjU{vl}, V)y=>r
J#Jo
b) thereisaveV— UG, with s(v)-d(v,, v)>r (v, is the root of the original
tree)

It is easy to see that in these cases no solution exists.
Suppose there exists a network H = (G, «q, s), pe N*, r=0 and dis-

joint subtrees G,,. .., G, s.t. there is a solution of the corresponding problem
but the algorithm does not find any. Assume H is such a network with &' n(v)
vev

minimal. The depth of the tree is =2. Let v,€ V be a vertex of maximal level
and v, = F(vy), vy = F(V,).

In the subtree rooted at v, certain vertices are selected as centers by
the algorithm, others are assigned to v,. Denote centers by ¢;, . .. ¢, vertices
assigned tov, by y,, ..., y,.

Now let us construct the following network that is obtained from H by
deleting the subtree rooted at v, and edge (v,, v;) and adding new vertices
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Cpy -y Cp Y1y -y Y and edges (v, ¢y), - .., (Vs, €), (Vy, Y1), -+, (Vg ¥5) With
edge weights a(v, ¢;) = d(v5, ¢,) (i = 1,..., 1), a(vy, ) =d(vs, ¥) (i =1, ...
..., 8) and vertex weights s(¢c;) =s(¢;) (i=1,...,8),s(0) =50 (i =
=1, ...,8). (See Fig. 2.)

9

Figure 2.

We define the new subtrees on this network as follows: if ¢,€G, for

some i then G, = {¢;} for k = 1, ..., p. Otherwise G, is obtained from G,
by replacing each y, contained in G, by y; and connecting it to v,.

Then the modified network will have a solution and the algorithm will
not find any. Further on the level sum of this network is strictly smaller
then the original one. 0
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