THE APPROXIMATE SOLUTION OF NON-LINEAR FUNCTIONAL EQUATIONS BY A STEFFENSEN-TYPE METHOD

By

Á. VÁRHELYI

Dept. of Numerical analysis and computer science, Eötvös University, 1088 Budapest, Múzeum krt. 6-8.

(Received January 3, 1983)

The classic secant method can be extended for solving a non-linear operator equation defined in the conditions of Banach spaces, by using the generalized divided differences treated in the last chapter of the monography [3]. In their paper [2] M. Balázs and G. Goldner proposed the

(1)
$$x_{n+1} = x_n - \frac{F(x_n)}{F_{x_n, x_{n-1}}(y_n)} y_n \quad (n = 0, 1, \ldots)$$

method for the computation of the solution of the equation

$$(2) F(x) = 0,$$

where $F: X \rightarrow \mathbb{R}$, (X being a Banach space) is a non-linear functional, and the auxiliary vector series was chosen in the following form

(3)
$$y_n := \frac{x_n - x_{n-1}}{\|x_n - x_{n-1}\|}, \quad (n = 0, 1, ...).$$

In this paper we are going to solve the functional equation (2) using a Steffensen-type method instead of the above secant method. Let's define a non-linear operator $\Phi: X \to X$ in the X Banach space using the above mentioned functional F

(4)
$$\Phi(x) := x - F(x) \frac{x}{\|x\|}$$

and let x_n , u_n be the nodal points of our method, where x_n is the *n*-th approximate solution of (2), but u_n is computed by the following form

$$u_n := \Phi(x_n).$$

We define step by step a scalar L_n and a vector y_n in the following forms

(6)
$$L_{n} := \frac{1}{F_{x_{n}u_{n}}(y_{n})}, \\ y_{n} := \frac{x_{n} - u_{n}}{\|x_{n} - u_{n}\|},$$
 $(n = 0, 1, ...)$

and suggest the following method

(7)
$$x_{n+1} = x_n - L_n F(x_n) y_n \quad (n = 0, 1, ...)$$

for solving the equation (2). According to the essential feature of divided differences $F_{x'x''}(x'-x'') = F(x') - F(x'')$ the following relation

(8)
$$||F_{x_n u_n}|| = |F_{x_n u_n}(y_n)|, \quad (n = 0, 1, ...),$$

can be proved easily. Further on we assume the functional F as being continuous in the sphere $S(x_0, r)$ specified later on.

Theorem. We suppose that the following conditions are satisfied

1°. For the divided difference of the functional F in the points x_0 , u_0 we have

$$|L_0| = \frac{1}{\|F_{x_0, u_0}\|} \le B_0, \quad B_0 \ge 1.$$

 2° . For the approximation x_0

$$|F(x_0)| \leq \eta_0.$$

3°. The divided difference of the operator Φ and the divided difference of the second order of the functional F satisfy the following relations

$$\|\Phi_{x'x''}\| \le M; \quad \|F_{x'x''} - F_{x''x'''}\| \le K \|x' - x'''\|$$

if $x', x'', x''' \in S(x_0, r)$, where

$$r := \max \left\{ \frac{B_0 \, \eta_0 \, (1-\alpha)}{1-2\alpha} \, ; \, \, \frac{MB_0 \, \eta_0 \, (1-\alpha)}{1-2\alpha} + \eta_0 \right\}.$$

4°. The constant numbers B_0 , η_0 , K, M satisfy the inequality

$$h_0 := 2K B_0^2 \eta_0(M+1) < \alpha < \frac{3-\sqrt{5}}{2}.$$

Then equation (2) has at least a solution $x^* \in S(x_0, r)$ which is the limit of the approximations (7) and the rapidity of the convergence is characterized by the inequality

(9)
$$||x_n - x^*|| \le (1 - \alpha)^n \left(\frac{\alpha}{(1 - \alpha)^2} \right)^{2^n - 1} \cdot \delta ,$$

where

$$\delta := B_0 \eta_0 \sum_{k=1}^{\infty} (1-\alpha)^{k-1} \left(\frac{\alpha}{(1-\alpha)^2} \right)^{2(2^{k-1}-1)}.$$

Proof. First of all let's take the following estimates, which are given directly from the formulas (5), (7) and the assumptions of Theorem:

$$||x_{1}-x_{0}|| = ||L_{0} F(x_{0}) y_{0}|| \le B_{0} \eta_{0},$$

$$||u_{1}-u_{0}|| = ||\Phi(x_{1})-\Phi(x_{0})|| \le MB_{0} \eta_{0},$$

$$||x_{1}-u_{0}|| \le ||x_{0}-u_{0}|| + ||L_{0} F(x_{0}) y_{0}|| \le \eta_{0} + B_{0} \eta_{0} \le 2B_{0} \eta_{0},$$

$$||u_{1}-x_{0}|| \le MB_{0} \eta_{0} + \eta_{0}.$$

According to formula (7) it results immediately

$$F_{x_0 u_0}(x_1-x_0) = -F_{x_0 u_0}(L_0 F(x_0) y_0),$$

whence using the formulas (6) and the definition of the divided differences we obtain the identity

(11)
$$F_{x_0 u_0}(x_1 - x_0) = -F(x_0).$$

Substituting x_0 for x_1 from the conditions of this theorem, we have

$$||F_{\mathbf{x}_1 u_1}|| \ge ||F_{\mathbf{x}_0 u_0}|| \left(1 - \frac{K \left(B_0 \eta_0 + MB_0 \eta_0\right)}{||F_{\mathbf{x}_0 u_0}||}\right) \ge \frac{1 - h_0}{B_0},$$

whence it results

(12)
$$|L_1| = \frac{1}{\|F_{x_1 u_1}\|} \le \frac{B_0}{1 - h_0} = :B_1.$$

From (11) we obtain

$$|F(x_1)| \le K ||x_1 - u_0|| ||x_1 - x_0|| \le 2KB_0^2 \eta_0^2 (M+1),$$

so we have

$$(13) h_0 \eta_0 =: \eta_1.$$

Considering the formulas (12), (13)

(14)
$$h_1 := 2KB_1^2 \eta_1(M+1) \le \frac{h_0^2}{(1-h_0)^2}$$

is given. The inequality $h_1 < \alpha$ is satisfied iff $\alpha < \frac{3-\sqrt{5}}{2}$. By induction we obtain

$$|L_{n}| \leq B_{n} \leq \frac{B_{n-1}}{1-\alpha} \leq \frac{1}{(1-\alpha)^{n}} B_{0},$$

$$|F(x_{n})| \leq \eta_{n} \leq h_{n-1} \eta_{n-1} \leq \left(\frac{\alpha}{(1-\alpha)^{2}}\right)^{2^{n}-1} (1-\alpha)^{2n} \eta_{0},$$

$$h_{n} \leq \frac{h_{n-1}^{2}}{(1-h_{n-1})^{2}} \leq \left(\frac{1}{1-\alpha}\right)^{2(2^{n}-1)} h_{0}^{2^{n}}.$$

On the basis of the formulas (15) we have

$$||x_{n+p} - x_n|| \le B_{n+p-1} \eta_{n+p-1} + \dots + B_n \eta_n \le$$

$$\le B_0 \eta_0 \sum_{k=1}^p \left(\frac{\alpha}{(1-\alpha)^2} \right)^{2^{n+k-1}-1} (1-\alpha)^{n+k-1} ,$$

whence using the inequality

$$(2^{n+k-1}-1)-(2^n-1)\geq 2(2^{n-1}-1), n\geq 1$$

we obtain

$$||x_{n+p} - x_n|| \le (1 - \alpha)^n \left(\frac{\alpha}{(1 - \alpha)^2}\right)^{2^n - 1} \cdot \delta_p,$$

$$\delta_p := B_0 \eta_0 \sum_{k=1}^p (1 - \alpha)^{k-1} \left(\frac{\alpha}{(1 - \alpha)^2}\right)^{2(2^{k-1} - 1)}.$$

Considering the completeness of X it results that the sequence $\{x_n\}$ has a limit $x^* \in X$. Since $\lim_{n \to \infty} \eta_n = 0$ by the continuity of the functional F we obtain $F(x^*) = 0$. From (16) if $p \to \infty$ the rapidity of convergence is given.

Using the inequality $2^{k-1} \ge k$, $k \ge 1$ we can estimate $||x_n - x_0||$ and $||u_n - x_0||$ in the same way as (16). So we have

$$||x_{n} - x_{0}|| \le B_{0} \eta_{0} \sum_{k=1}^{n} (1 - \alpha)^{k-1} \left(\frac{\alpha}{(1 - \alpha)^{2}} \right)^{2^{k-1} - 1} \le \frac{1 - \alpha}{1 - 2\alpha} B_{0} \eta_{0},$$

$$(17)$$

$$||u_{n} - x_{0}|| \le \frac{MB_{0} \eta_{0} (1 - \alpha)}{1 - 2\alpha} + \eta_{0}.$$

Choosing r as in the 3° condition of the Theorem it results $x^* \in S(x_0, r)$. This completes the proof.

Computational example

$$F(x) = (x^2 + y^2 - 2)^2 + (x^2 - y^2)^2 = 0,$$
 initial values: $x_{-1}(.7; .7)$ for the secant method, $x_0(.8; .8)$ for the Steffensen-method.

Secant method		Steffensen method		
1	.89931 .89931	.959508 .959508		
2	.938356 .938356	. 976706 . 976706		
3	.963359 .963359	.987196 .987196		
4	.977575 .977575	.993213 .993213		
5	.98629 .98629	. 99649 . 99649		
6	.991566 .991566	. 998227 . 998227		
7	. 994807 . 994807	. 99913 . 99913		

The exact solution is (1; 1), the secant method will accurate to three decimal places after 11 step.

Acknowledgement. The author would like to thank Dr. B. Jankó for his valuable suggestions.

REFERENCES

^[1] Altman, M.: Concerning Approximate Solutions of Non-Linear Functional Equations. Bull. Acad. Polon. Sci. 5. (1957) pp. 461 – 465.

^[2] Balázs, M. – Goldner, G.: On the Approximate Solution of Non-Linear Functional Equations. Anal. Sti. Univ. "Al. I. Cuza" Sect. Mat. 15 (1969) pp. 369–373.

^[3] Jankó, B.: On the Solving of the Non-Linear Operator Equations in Banach Spaces (in Roumanian) Bucharest, 1969.