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The aim of this paper is to give a simplified proof of the convergence of
the Remez algorithm.

Let I =[a, b] be a bounded and closed interval, U,, an n-dimensional
linear space of real functions continuous on I, for which the Haar condition
holds, i.e. every non-zero element of U, has at most n—1 roots on I. Let,
furthermore Z be a closed subset of I, which has at least n+ 1 points. Under
these conditions, every function f(x), which is continuous on Z has a
uniquely determined best approximation in U,, in the sense of C(Z) norm,
denoted by v (x).

The aim of the Remez algorithm is to construct this element as the
limit of an infinite sequence.

We quote the well-known alternation theorem of Cebysev: v(x) is the
best approximation in U, for f(x)eC(Z), if and only if there exists an
ordered set P of (n+1) distinct points of Z, P ={x,, ..., x,,;;} with the
properties

(1) FE)=v ()] = max | J@-v()l, =120+,

and
sg(f(xip)—v(xipy) = —sg (f(x)—v(x)), i=1,...,n.
Denote by E, (f, Z) the distance of f(x) from U,:

E,(f,2) = min max | f(x)—u(x)| .
ueU, x€zZ

If Z, is a subset of Z, then it is obviously

2) E.(f,Z)=E.(}, 2).
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This is true specially for the sets of n+ 1 elements, and the alternation
theorem of Ceby3ev assures the existence of such an ordered system P of
n+ 1 elements, for which

E.(f,P)=E,(}, 2)
holds.

If P is an ordered set of n+ 1 distinct elements, then it is easy to find
E.(f, P) and the best approximation on P.

Let x;, ..., x,,, be the (distinct) points of P, then there exist numbers
d;, with the following properties

n+l

3) > dju(x)=0, forevery ueU,;
j=1
“4) Sgdj = _Sgdj—l ;
5) dj=0, j=12,...,n+1;
n+1
(6) 24l =1,
j=1
Let u, (x), ..., u,(x) be a basis of U,. Consider the determinant of the

matrix, which is obtained from the matrix

[ul x) ...uy(xy) ]

Uy (Xpiq) - - - Uy (Xnyy)
by omitting the j-th row. We multiply this determinant by (—1)/~* and
denote the received value by d;. Then we have

n+1 o

xdju(xy) =0 forall k,
j=1

and so for every u in U,

n+1
) > dju(x)=0.
j=1
The dj’s are not zero and sg [1j =—sg cij_l, the opposite case would con-

tradict to the Haar condition, thus
in+1

d; = &j 21 |(fj| have the desired properties.
j=

The construction of the best approximation on P may be the following.
The simultaneous equations for the a;’s and E

®  Je)- T aux) = (~E j=1,2.. 0+

are solvable, as a consequence of the alternation theorem of Ceby3ev.
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After multiplying (8) by d; and summing over all j, from (7) we have

n+1

n+1 .
S d,7(x) = [2 (- 1)1—1deE.
j=1 j=1
From (4) and (6) it follows that

n+1
>dif(x)=E or -—E,

j=1
and therefore !

)

n+1

3.4,/ 6)| = Ea( P).

j=1 i

Thus E is determined and then one can solve (8) also for the a,’s, and

u() = > au(x)

is the best approximation on P.

The Remez-algorithm gives a construction of a sequence of ordered sets
P, of n+1 points in Z, in such a way that the best approximation on P,
converges to the best approximation on Z, as k—~ .

The algorithm starts from an arbitrary ordered set R,

If the set P, is given, one can find E, (f, P,) and v, (x), the best approxi-
mation of f(x) on P,, as it was described.

If T:izx | fC)—viX)| = E,(f, P),

then v, (x) is the best approximation also on Z, according to the Cebysev
theorem. In the opposite case, one chooses a “maximum” point y, in Z for
the function | f(x)—v, (x)].

Let the (new) P,., be constructed by replacing one element of P, by
¥ So that after ordering the equalities

NO) g () =y () = g () = v, ()

hold.
It is easy to prove the inequality:

(11) Eq(f, Per1)=En(f, Py)-
In fact from (9), (6), (3), (4) and (11) it follows that

+1 n+1
En(fy Perd) = Ea(f, P = | 3 d0 f(xF+0)| = ST [d$+D| E, (, P,) =
j=1

=

n+1
— Z d§_k+1) (f(x}k+1)) -V, (X}IH-I)))
j=1

n+1

- 2 !d§k+1)| E.(f Pk) =

j=1

n+1
_ Z |d§k+1)| (lf(x§h+1))_vk (x§k+1))| —E, (f, pk)) .
j=1
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Consequently
(12) En(f; Pei)—EL(f, Py) =
= [d§ED] (max | f) =, ()]~ En (/, P)
is valid, since the numbers in the parentheses are zero except the j*-th one,

finally from (5) we get (11).
If an inequality

(13) 4% >¢

is valid for all k with a positive ¢ independent of k, then we have from (12)
max | f()— vy ()] =By (f, P+ + (o (fy Pas) = En (/s Pa)
Therefore from (2) we have
max | £ =V, ()] = En (1, D)+~ (Ea(f Prs)—En (£, P2)

But the numbers E, (f, P.+1)— E.(f, P,) converge to zero, as they are
the differences of a bounded and increasing sequence.
Thus the inequality

(14) lim sup max | f(x)—v, (x)| = E, (f, 2)
Kk x€Z

holds.
If v(x) is an accurnulation point of the v, (x)-s, then the relation

max [f)—v(x)| <E,(f,2)

is valid, but the inequality is not possible, hence we have
max | f(x)—v ()| = E.(f, Z),
x€Z

i.e. v(x) is a best approximation on Z.

The sequence of v, (x) must have at least one accumulation point, since
they are elements of a finite dimensional space and form a bounded set.
The uniqueness of the best approximation assures the convergence v, (s) to
the element of best approximation on Z.

It remained to prove the validity of (13) with ¢ independent of £.

If such an e does not exist, one can select a subsequence k” of indices k,
for which the following relations hold:
(15) d$¥)~0 for a fixed j*,

(16) X9 g, (€Z) forallj, j=1,2,...,n+1.
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Let &t (x) be the element of U,, which interpolates f(x) in the points ¢,
except gjs

(17) aE)=r¢), j=12..,n+l, j=j*.

Such an element exists because of the Haar condition. Taking into account
9), (3), (15)—(17) and the continuity of f and i, we get
in+1
E.(f,Pe) = | 2 df f (x))
j=1

-0 for kK - o,

=3 a0 (1~ )
j=1

But this contradicts to (11).
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