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1. Introduction

By a fact, as introduced by Petri [Pe], an additional system specifica-
tion or assertion on a system behaviour is formulated. Descriptions by facts
are attractive, since they are formulated within the language of net theory
[GLT]. A fact in a place/transition net (PT-net) has the syntactic form of a
transitional element, with the semantical property that only such markings
are considered to be correct states of the system, where this transition has
not concession. The fact of Fig. 1.1, for instance, specifies the condition, that
in no reachable marking both p, and p, contain a token. This fact might
belong to a system of reader and writer processes, where the number of to-
kens in p; and p, indicates how many readers and writers, respectively,
are in the critical section. Together with the capacities 5 and 1 this fact rep-
resents the specification: “Writers are in mutual exclusion with all readers
and all other writers. Furthermore at most 5 readers have access.”

In [GeLa] a systematic way for implementing fact specifications by
PT-nets is proposed under the restriction, that all places have finite capaci-
ties. We here will show a natural way to extend this to the general case.
Then it will be also possible to realize a fact like Fig. 1.2, where p, has not
finite capacity. Consequently in this example the simultanous access of
readers is not bounded.
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2. Nets and facts

We first give a formal definition of PT-nets [ JaVa] and facts in PT-nets
[GeLa].

Definition 2.1. A place/transition net (PT-net) is given by N = (S, T,
F, K, W, M,) where:

a) S and T are finite disjoint sets of places and transitions, respectively,

b) FS(SXT)U(T xS) is the flow relation,

¢) K:S—-NU{w} assigns to each place a finite (K(s)€N) or infinite

(K (s) = w) capacity,
d) W : F—N assigns to each arc its multiplicity,
e) M,:S~—N is the initial marking.

To simplify the definition of the firing rule we extend W to W:(SxT)U
U(Tx8S)-~N by W (x,y):=if (x,y)€F then W (x, y) else 0.

Definition 2.2. Let be t¢T a transition and M:S —~N a marking. Define
a map M’':S—Z by

M (s):= M(s)—W (s, )+ W (¢, 5) .

Then ¢ has concession or can fire if M(s)zW(s, t) and M’ (s)= K (s) for all
s€S. t fires M to M, : M [t=M, iff t has concession in M and M; = M".
[M=>:={M,;|IM[=M,} is the set of markings reachable from M, where

[> is the transitive and reflexive closure of {(M, M,)| 3t: M [t=M,}.
By this firing rule we have the following property.

01 v,I w1 b

Fig. 2.1

Proposition 2.3. [GeLa] Let be teT the transition of Fig. 2.7 and *t:=
={ay, ...,a), t* ={b, ..., b} and

;= (M(a)<v) for l=si=sk,
Bii=(M@b)+w;=K(®)) for 1=j=I.
Then t is dead, i.e. can fire in no M€ [My=> iff for all Me[My>:
) V...V VBV ... V.

Definition 2.4. A transition t€T is a fact for a marking M, if (I) of 2.3
holds. It is a fact of the net N if it is a fact for all Me[M,>.

By the assumption w=n for all neN, B; becomes identically false if
K (b;) = w and can then be omitted in (I).
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3. The realization of facts

By a realization (or implementation) of a fact { we understand (as in
[GeLa)) a net, for which ¢ is a fact and which has a maximal set of reachable
markings with this property. The last condition assures that the realization
contains no undesired side-effects.

Definition 3.1. Let f be a transition as in 2.3. A realization of t is a net
= (S, T, F, K, W, M) such that *tUt* =S and (Me[M,> iff t is a fact
for M).

If for all s€S: K(s)<w the construction of a realization for f of Fig. 2.1
in [GeLa] proceeds as follows. First for each arc A; = (a;,f) (1=i=<k) and
B;=(t,b;) (1=j=I) PT-nets NA, and NB,, respectively, are built. These
nets have special places r; and s; respectlvely The emptiness of this place

indicates that condition «; and f} respectively, is true. For an instance of
NA,; consider the net in F1g 3.3 and omit transitions “in” and “out”. Re-
alize that r;:=r has the required properties. Hence, to obtain a realization
of ¢, these nets are connected by a new place d in such a way, that the in-
variant

(o) M@+ +ME)+ME)+ ...+ M) +M@) = k+1—1

is satisfied for all Me[M,=. By this at least one of the condltlons a; or B;
is true at any time.

We now extend this construction for K(s) = w. As proved by many
authors and as discussed in [Va81] there cannot exist a realization by a
PT-net for the fact in Fig. 1.2. Therefore we have to leave the framework
of PT-nets. But we will do it in such a way, that the solution is as close as
possible to the one described above, i.e. it will have the same graphical
representation and the same invariants. To this end we will formulate the
solution in the framework of SM-nets, which are a natural extension of PT-
nets [Va78].

In a SM-net the multiplicity of an arc can also be the name of an arbi-
trary place of the net. In an actual marking M this name s is replaced
(evaluated) by its token number M (s) and then the net fires as a PT-net.
Since the inscriptions of the net are changed by the dynamical behaviour
of the net, SM-nets are called selfmodifying nets. To allow multiple arcs like:

A ~ we use the notation of formal sums:

- S — L+ 2s+g

S —= or a map f: O_L_D where

S fi{e, s, s, s”}~N with
f@ =4, f(s)=2, f(s')=1, f(s") = 0. In the formal definition we will use
the last representation. An example of the firing rule is given in Fig. 3.1
(where all capacities are w).

T*
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Definition 3.2. A selfmodifying net (SM-net) N =(S, T, F, K, W, M,)
is defined like a PT-net in 2.1, with the difference of:

d) W:F-Map (SU{e}, N) assigns to each arc its multiplicity.
Map (X, Y) is the set of all maps from X to Y.

Every PT-net N=(S, T, F, K, W, M,) is isomorphic to the SM-net
N, =S, T, F, K,W;, M), where for all s€S: W, (x,y)(e¢) = W(x,y) and
W, (x, %) (s) = 0. )

Let be 0e Map (SU{e}, N) the zero-map x|—0. Then W is defined as
for PT-nets.

Definition 3.3. For a marking M and a SM-net multiplicity-map W we
define the evaluation of W at M W (M) : F —~N by

WM) (% y):=Wxy)(e)+ 2 W) (M(9)) -

Then for a SM-net N = (S, T, F, K, W, M) and a marking M a PT-
net N(M)= (S, T, F, K, W (M), M) is defined. We define the firing rule
for the SM-net by: M[t>M’ in N iff M[t=M" in N(M).

Concurrent firing of two transitions is possible if they have disjoint
input and output places (as in the case of PT-nets) and disjoint sets of places
as multiplicities on incidenting arcs.

We now proceed in the construction of a realization for the fact in Fig.
2.1. If K(a;) or K(b;) belongs to N, we construct the net NA; or NB; as in
[GeLa]. If K(b;) = w the proposxtlon B is identically false. Hence we can
equivalently omit the arrow (t, b;) in this case. What is left, is to construct
the net NA; for the case K(a)— o in an appropriate way. To this end
we consider an arbitrary such arc as in Fig. 3.2 with K(p) = w.

We start with the net from Fig. 3.2 of [GeLa] with K(p) = k. (This
is the net in our Fig. 3.3, when transitions “in” and “out” are omitted.) To
extend this net from the fixed capacity k€N to unbounded capacity, we
introduce a new place k with M, (k) = k tokens. Then interpreting the letter
k on arcs not as a constant kEN but as the name k€S of a place, we obtain
a SM-net with the same behaviour as before (the arc labelled by k—m+1
stands for one arc labelled k41 and a second with inverted direction, which
is labelled m.) Now we want to change the net in such a way that the value
of k can be changed dynamically.

This can be done by adding new transitions “in” and “out” and ar-
rows (in, k) and (k, out) (see Fig. 3.3). The changing of the ‘actual’ capacity
M (k) of p should be required to be independent of the behaviour of the
rest of the net. By this we mean, that for arbitrary t¢ T—{in, ouf} a firing
of the two transitions “t, in” (‘“out, £’) in this order should have the same
effect as “in, ¢’ (“t, out”). This is no problem with the exeption of f = C
and f = D, where the multiplicities contain k. For instance in the case of
t = C a firings of “t, in”’ brings k—m+1 tokens to the place 3, whereas
“in, £’ brings (k+1)—m+ 1. This must be compensated by additional self-
modifying arcs (in, 3) and (3, ouf) with multiplicity r.
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Now the net NA works correctly, i.e. the markings on p and r have the
possible values (0,0), (1,0), (2,0), .. ., (m—1,0), (m—1,1), (m, 1), (m+1,1), . ..
i.e. M(r) =0 implies that ¢ is a fact. The construction of the realization can
be completed as described above.

4. Bilinear invariants

It becomes now necessary to sharpen our analysis of the SM-net is Fig.
3.3 by proofs using invariants. These should be similar as those given in
[GeLa]. Replacing k by M (k) we obtain for all Me[M,> the invariant
equations:

(ix) M(1)+M@)+(m—1)M(r) = m—1,

(i2) M(py+M(1) =M @) = m—1,

(i) M(k)M(1)+M(k)M(2)+(m—1)(M(3)+
+M(4)—M(l)—M(2)—M(k)) = —(m—1),

(iy) M@+ M@ —MEM(r)+(m—-1)M(r)=0,

(is) M@A)+MEF) = 1.

Since these equations are bilinear forms, we call them bilinear invariants.
They can be used to prove as in [GeLa]:

Proposition 4.1. For all M¢[M,>:
a) M(r)=0=>M(p)<m (i.e. « = frue),
b) M(ry=0<M(p)<m—1 (i.e. « =true AM(p)=m—1).

This gives the desired property of the indicator place r. As mentionned
in [Va81] bilinear invariants have a representation by matrices (like bilinear
forms), which can be computed from the SM-net. By solving a linear system
of integer valued equations, the method applied here, namely deriving bi-
linear invariants from linear invariants, is more efficient if possible.

5. Special solutions and examples

For the special case of the fact in Fig. 5.1 describing mutual exclusion
with unbounded capacities we obtain the realization of Fig. 5.2.

O—3F—0

p»] ’u pz /u
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This net can be contracted to the net of Fig. 5.3.
From the invariants (i,)— (i;) we obtain:

(is) M(p)+M@3,y) = M (k) M(ry),
(i7) M (p)+M (3;) = M (k) M (ry),
(is) M@r)+M(,)=1.

By these equations the following bilinear invariant can be proved, which
expresses the mutual exclusion of p, and p,.

(i) M (p,)M(p;) = 0.

To obtain a realization of the fact in Fig. 1.2 describing the readers/writers
problem, we have to restrict k, in Fig. 5.3 by the capacity K (k,) = 1. By
further contracticn we then obtain the realization of Fig. 5.4. For this SM-
net the following bilinear invariant holds:

(iz0) M (py)+ M (s)+ M (k) M (p;) = M (k).

6. Stepwise realizations

In a practical implementation a fact can be given not in isolation but
within the framework of a “partial realization”. For instance in the case of
the unbounded readers/writers problem we could start with the partial
realization of Fig. 6.1. “in” and “out” perform the arrival and exit, respec-
tively, of processes. On [, or [, they do some work on local data. With the
firing of A, and A, they give the information whether they act as readers or
writers. k counts the actual number of processes in the system. The net has
the following (linear) invariant:

(i11) M (p))+M(p)+ ML)+ M (L) = M(K).

in
| l1

Fig. 6.1
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By realizing the fact as in Fig. 5.4 we obtain the “complete” realization in
Fig. 6.2. It satisfies the invariants (i;,) and (iy,).

[} ~

r " 1
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Fig. 6.2

This solution has been described also in [Va81]. By invariants (i,,) and
(i;;) many interesting properties can be proved in the same way as for the
bounded version (see [Va8l1]).
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