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The purpose of this paper is to present the original — and probably less
known — Leibnizian deduction of the so-called Leibniz-series [% =J 1—

—%+I€—~;—+... (mostly on the basis [12], [13] and [15], [16], [17],

[18]). .
The efforts to calculate n! as exactly as possible and the history of
mathematics both are almost of the same age?. We have chosen the Leibniz’
arithmetical quadrature of the circle® from the manifold intellectual produc-
tion accumulated in this field for centuries not only because of its charac-
teristically individual and interesting order of ideas but also thus we can get
an insight into the important process of an outstanding period (i.e. the late

1 Leibniz uses the term ‘“circumferencia (circuli), si diameter circuli sit 1” (= “cir-
cumference of a circle, of which the diameter is equal to unity’’) instead of the symbol
x ([10], [13], [15], [17]). The = (in the sence just quoted) first appeared in print at the
beginning of the eighteenth century ([33], p. 243.), but the wide-spread application of it
is due to the influence of Euler’s works ([42], p. 41.; [48], p. 484.; [49]. p. 347.).

2 For the details see [35], [42], [44], [50]. Leibniz deduced the infinite series men-
tioned above in 1673, but it were the Hindu mathematicians, who first obtained it before
1550 ([45], [46], [47]). Similar results were achieved (before Leibniz, though by a methodo-
logically different route from his) by J. Gregory (1638 —1675) (in [22], which was first
published in print in [34] p. 25.), Newton (1642 — 1727) ([30]) and Brouncker (1620 — 1684)

([25]), too. The latter transformed Wallis’ infinite product for — ([25], pp. 181 —182) into
4

continued fraction. Euler showed (in [39]) that Brouncker came very close to Leibniz’ re-
sult because the reciprocal partial fractions of the continued fraction of Brouncker turn
out to be the partial sums of the Leibniz-series (see further [36], [37], [38], [40], [41]).

3 Leibniz remarked: *‘J’appelle cette Quadrature, Arithmetique, par ce qu’elle
exprime exactement la granduer du Cercle, et de ses portions par un rang infini de
nombres rationaux ou commensurables a une grandeur donnée.” ([15], p. 338.) (See also

(4], [14], [16], [17])
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seventeenth century) in the history of mathematics in the course of which the
handling of the mathematical problems developed from the older geometrical
methods to the (Leibnizian) analitical solution of them.

Leibniz found the quadrature of the circle “in arithmetical way”
in the summer of 1673 ([1], [2])*. He sent the first detailed description of
his result to Huygens in October 1674 ([12], [13]).

Leibniz’ procedure in question can be summarized as follows.

1. Leibniz defined the auxiliary curve AEZUF (fig. 1).

Let O be the centrum of circle with radius AO = a. Let the tangentes
of this circle at A and B meet at P. In the fig. 1. BD 1. AD, LQ||NR|BD,
KL||AO, HGLAH 10U, TV1L AV, VZ1 AV, CZ1L AC and BS1 AP. Let
us introduce the following notations: x = AD, y = AP =BP =DE, z =
=BD, ¥ =AT, c=AV, b=VZ, v=TV, M = the moment of arc AT
about the AP-axis, dx = KL, dy = the infinitely small element of the in-
terval ACS, dz = NK, d¥ = NL.

Moreover, T; = the (shaded) area AVZAS,

T, = the area of the (shaded) circular segment ATA,
T, = the area AZCA,
T, = the area of the circular sector AOTA.

If we perform the construction shown in fig. 1. (i.e. the construction
of the point E) in every point of the semi-circle ABH, than the obtained
points define a locus, a new curve AEZUF — the so-called ““figura segment-
orum” or “figura anonyma”? — with equation®

4 Leibniz wrote: “Est autem magni momenti haec Circuli reductio ad Rationalita-
tem, qua nemo quicquam maius ad circuli dimensionem praestitit.” (“It is of great im-
portance toc reduce the quadrature of the circle to defining it by rational way. This result
is the most considerable progress in this field.””) ([3], p. 245") Moreover, Leibniz ascertain-
ed: “Quadratura Circuli Arithmetica a nemine ante me data est ...” (“It was I who first
found the quadrature of the circle by arithmetical way ...”) ([4], p.- 7).

In December of 1673 Leibniz met Huygens and — without giving the details — told him
about this invention ([43], pp. 688 —689.; [51], p. 63.; [52], p. 62.).

In his correspondence Leibniz first alluded explicitly his quadrature of circle only in sum-
mer of 1674 ([10], p. 117.; [11], p. 120.).

The circle-quadrature of Leibniz appeared in print for the first time in 1682 (see [23]).

5 The rectangular triangle KLN with infinitely small (that is negligible with respect
to finite quantities, but unequal to zero) sides was called by Leibniz “triangulum charac-
teristicum” (“‘characteristic tringle’”) ([20], p. 217.; [24], pp. 399 —400.; i.e. “triangle ca-
racteristique’””, [21], p. 259.). Leibniz only introduced the symbols dx, dy and dz for the
sides of the triangle in question later (see [9]). During 1673 —75, under the influence of
Pascal’s and Wallis’ works, Leibniz applied the so-called ,,infinitesimal unity”, therefore
he omitted it, when it acted as a multiplier ([4], [9]).

¢ Leibniz did not use indices.

? J. Gregory had already introduced this curve ([29], pp. 23 —24.), but Leibniz did
not noticed it ([51], p. 69.). (Leibniz bought [29], when he was at London for the first
time in the spring of 1673, see [51], p. 75.) You can find the “figura segmentorum” (be-
fore Leibniz) at P. Fermat (1601 — 1665), too, but Leibniz could not know this fact in 1674,
because the Fermat’s paper (i.e. [26]) was in deposit at Carcavy (1600 —1684) and it was
published only in 1679 for the first time (in [32], pp. 44 —57.).

X
8 On the basis the equalities LA 5 and 2% = x(2a —x).
a
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2
X = 2ay ' @)
a2 +y2

2. Leibniz proved that M =T,.

Proof: The moment M is equal to the sum of the elementary moments
(m=)NL.x® But, since

NL _ _a
KL BD’
therefore
NL-x = % . KL,
BD

further considering

. . ax
we have M = summa omnium NL.Xx = summa omnium E KL = sum-

ma omnium y- KL = T,.1°
3. Proposition: M = 2T,

Proof: From the equality %—2—: ¢ we have (m=)NL.x =

a-—x
= a(NL—-NK), so that

M = summa omnium m = summa omnium NL.x =

= summa omnium a- NL—summa omnium - NK = a¥ —av = a(¥ —v).11

This completes the proof of the proposition in question because the

area T, is equal to %a('f’—v).

4. From the latter two propositions it follows that T; = 2T,.12

5. Leibniz calculates the arae T, that T, and (finally) T, are to be
known.

9 In Leibnizian term: (M =) summa omnium NL.x.
c

¥
10 In modern form: M = f xd¥ = fydx=T1.
0

' w v
11 In modern style: M = fxd’I/= fadW—fadz:a(W—v).
0 0 0

12 This proposition is one of the most useful special cases of Leibniz’ notable “trans-
mutation theorem”, see later.
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2
T, = summa omnium xdy. But x = 2ay (see (a)) and
a?+y?

y? yooae—yr o (e

%+ 2 a?+y? a?—y? at—yt at— -

a a
2 4 6 8
QERERGROIES
a a a a
so that

2 5 7
T, = summa omnium —2—Q—dy = [ b _b__b__ ] 13

az+y? 3a 5a® Tab

Thus, we have T, = %Tl = —;—(bc—Ts).

6. Lastly, T, = T,+ -~ — betav Ty
2 2 2

But, in our case: bc+av = 2ab,** so

b3 b5 b?
T, =ab——+————+ . ... b
! 3a  5a® Ta’d ®)

7. In the special case a = b =1, we get from (b) the area % of the

quarter circle with unity radius:

It is remarkable that after 1674 Leibniz proved the equality T; = 2T,
using no more the moments (as we have shown), but he considered it ([15],
[16], [17], [18], [19] and [24]) as an immediate consequence of his so-called
“transmutation theorem’.

Leibniz obtained this theorem as follows:

Let an arbitrary (smooth convex) curve AT be given (fig. 2.). Now we
are going to find the area of the curve-segment ATA.

13 | eibniz performed the long-division and the integration term by term on the
basis of Mercator’s and Wallis’ works ([27], [25]).
14 It follows from the formulae of the remark (8), if x=c¢, y =b, z=v.
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For this purpose let us divide the given arc AT into infinitely small
parts (whose number is infinite). Let us join the points of this partition to
the origin A, at the same time through them draw a set of parallels to the
2-axis to their intersection with the x-axis.

Let now N, L be two neighbouring points on the arc AT. Let the straight
line NL (that is the one of the tangents'® of the arc AT) meet the z-axis at
P. Let the parallel to the x-axis through P meet NU in R, LV in Q.

From our construction, it follows that the area of the (shaded) rectangle
RQUYV is equal to the double-area of the (shaded) triangle ANL.16

If we perform the construction just mentioned in every tangent of the
arc AT, then the corresponding points R (or — because of the partition of
the arc AT into infinitely small parts — points Q) define a new curve AZ.
One half of the area under the arc AZ of this curve is equal to the area of
the segment ATA. This statement is the famous transmutation theorem (of
Leibniz).?

The above equality 2T, = T; is one of the special cases of this theorem.

The transmutation theorem was the first truly independent achievement
of Leibniz.18 Leibniz was stimulated by the efficiency of this theorem to solve
further quadrature-problems. These investigations of his considerably con-
tributed to invent convenient symbols for infinitesimals ([7], [9]).

At the same time, the experience gained by him in calculations with
moments led him to discover the fundamental, general rules of the (Leibni-
zian) infinitesimal calculus ([5], [6], [7], [8))-
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