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The paper gives a new method for finding the global minimum in a finite n-dimen-
sional interval.

1. Excluding-theorems

Theorem 1.1 Let f: Dc R*—~R™ and assume that
IF () —f (alls= Ky Ix — ally + K, |x—allf,

where x,a€D; K, = K, (a), K, = Ky(a)=0; |-|l; and ||-||, are arbitrary
norms on R® and R™, respectively. Then

loe—ally =V If (@)llo/ K+ (Ki2Ko)? — Ky [2K,y; Y a,2€D and  f(x) = 0.
Proof. We can obtain the result from solving a quadratic inequatity [2].
The fixed symbols are as follows:

X = [x, X9, - -+, X,], XT: the transpose of x;

I|B|| = max; >, |b;cl, where B = [b,;,] is a real, finite matrix;
T=T(ah)={x:a-h=x=a+h; h=0; a, h, xéR"} is an interval (rec-
tangle) in R® with centre a and radius h (R is canonically ordered).

Theorem 1.2 Assume that f: R"—~R* is twice-continuously differentiable
on T(a, h) and f(a)=0. If

ri = (VaAnK [ f @] +1F @2 = I @l)/2nK; i=1,2, ..., n;
K=9,5 sup 17 GOl

and

then a¢ T (a, )NT (a,1); Vf(x)=0.
Proof. From Taylor formula
J) =f@+f (@) (x—a)"+08,5 (x—a)f” (&) x—a); (x, €T (a, h)),
and thus
I ) =f @] <IlF (@I - ICc — )T ||+ nK [[(x—a)T||?; vV x#d.
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Hence from Theorem 1.1
l@—a)T[| =V f @I/nK+(If (@)II/2nK)? —|.f’ (@)/2nK =
= (VanK [f @[+ If @ ~If @))/2nK; Vf(@@) =9 and «€T(a,h).

Theorem 1.3 Assume that f;: R*"~R (j = 1,2, ..., m) are twice-con-
tinuously differentiable on T (a, h), and let f: R*—~R*! be defined by f(x) =

=2 1f;™)1, f(@y=0. If
r. = (VanK-f @)+ (S If; @I — S IIf; @)/2nK; i=1,2,...,n

and
K=0,52 sup If7 el
then a¢ T(a, )h)NT(a,r); V[f(x)=0.
Proof. Obviously exist p, p,, ..., p, (p; =@ or 1) so that
f)=F @) =3, (=1)f;(x), and f(a)=F(a).
If now Theorem 1.2 is applied to F (x), and it is used that
VIS @)lla/ Ky +(Ki[2Kp)* — Ky [2K,

is a monotone diminishing function of K, and K, [2], then the proof is com-
plete.

Theorem 1.4 Assume that f;: R"->R* (j= 1,2, ..., m) are twice-con-
tinuously differentiable on T (q, )(1), and let f: R"—~R?! be defined by f(x) =

= max; | f;(x)], f(a) =8. 1f
ri = (VanKf @+, @I - |Ifi, @I)/2nK; i=1,2,...,n;
K=0,55up i/ () and fj, (@) = (@),
then a¢ T (a, N)NT (a, r); Vf(x)=0.
Proof. By Theorem 1.2 the proof is evident.

2. A method for finding the global minimum

The following problem is given:

g(xX) =min, b=x=¢, b,¢,xER™.
Suppose now that
m= min g(x)=M
b=x=c
and one of the Theorems 1.2—1.4 can be applied to g with T (aq, h) =
= T((b+0)[2, (c—b)/2).
We can describe the steps of our method as follows.
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(1) We examine the realization of f(x, d)=g(x)—d in the case of d =
= §,5(m+ M) = d and x€T (g, h). Suppose first that f(x, d)>@, v x€T; ie.
min g=>d. (Of course it is a provisional condition only.) In this case (at such
M=) pn+t one of the

a level &), first in the centre of T = T[a, 5; h,
Theorems 1.2—1.4 is applied to f(x, d) (see Fig. 1.).

dT fovd)= 3(x)—-d=o

R -".‘1&'-'-: o T=Ttad;f,0)

d—— EETEE
T(GIJ f') ~ ~
iy — T=T{ad i RiM-m)/2.)
e TaR), TR, o

Fig. 1.
For example from Theorem 1.2 we get
R = r; = () 4nK (g @—d)+ (g’ @]+ 12 —(Ig’ @]+ D)/2nK,

where i=1,2,...,n+1 and
K=05 sup lg” GOl -

(Hereby it is known that f(x, d)>R, i.e. g(x)>d+R; vxeT((a h)ﬂT(a R)
R= {R, ..., R)). If R<|hT||, then we cover the set T (a, W)\T (a, R) with
sets (rectangles)

T, =T (ay ..., q_q, G— (hk+R)/2 Qyiqy -+ a3 R, ..., (N,—R)/2,

Y
T =T¢ (al, ey Gy, ak+(hk+R)/2, Qpyq, -0 R, ..o, (Be—R)/[2,
heyy -- b)), Be—R=0, k=12,...,n

The number of the covering rectangles is between 2 and 2n (see Fig. 2.).
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A
T | TeR g A1
Taf) L Taf)
Fig. 2.

We continue the examination of level d with T; (if h, — R>). If T, can not
be excluded in one step, then T, must be divided, too. After a finite number

of steps the entire T will be excluded (Fig. 3.).
flad;=C

=2
Jﬁew . 'ﬁ.cwg’
J R’nh_?r'r N »

~ _';

T= T(a,d:4,0)

Fig. 3.

Let Rmin be the minimum of the computed values R. If Rpyin=0 (8 is a tech-
nical constant), then

m:=d+Rmn and M:= min {M; ci+fmin},

where fuin is the minimum of the computed values f(x, d) on the level d.
We shall denote such a level d as "type a”. If Rmn<& (“type ¢”), then
m:=m and M:=d.

Now let us see the case min g=d. In this case, after a finite number of
“excluding steps” R <& or f(x, d)<# at the point in question. If R = Rmin<¥é
(“type ¢), then again m:=m and M:=d. If f(x,d) =f-<0 (“type b"),
then m:=mand M:=d+f-.

(2) After examination of the level d the first approximation u of the
solution (solutions) is as follows. In case “type a” let u be the first point x,
where R (X) = Rmin, but in cases “type b and “type ¢’ let u be the final
examined point.
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(3) With the new values of m and M we repeat the examination to
T (a, HNT (u, H_émm) (for “type a”), or to T (a, h) (for “type b’ and “type
¢”’). 4 will be discussed in Theorems 2.1 and 2.2; TQmin = {Rminy - -+, Rmin}-

(4) If M—m<e, then the process is finished.

Theorem 2.1 Let « the unique solution of our problem. Then u-—«,
YM=g@),e=0 6=0 m<Mand "A= .

Proof. Now each level becomes “type a” since M =g(x), m<M,
=10 and “A = «”. Hence from ¢ = ﬂ=~>m, d—M = g(a)=Rmin~0 (since
f<Rmin<(M—m)-8,5)=f(u, d) = g (u)—d~@ (by each Theorems 1.2— 1.4)

=g (U)—~M = g(x)=u—a (since g(x) is continuous on T(a, h) and « is
unique solution of the problem).

Remarks. (1) If M =g («) but & and ¢ are sufficiently small positive num-
bers, then u (= u,) is a sufficiently good approach of « with the “naive meth-
0od” (A= ).

(2) We can obtain also certainly convergent modifications of our meth-
od for M =g(x)

(i) if in place of T (a, HNT (u, )»_émin) we use T (a, )N (U T* (x, -1)?)),

where T*(x, R) is an exluding set (cube) with R<M—d already used in the
process (see Fig. 3.);

(ii) if Rmin=M —d, then A:= 2 and we examine the level d again;
(iii) if m = g(e) ([1], [4]).

Theorem 2.2 Let « be the unique solution of our problem. If Theorem 1.2
can be applied to g, then u—~a, YM =g (), e =%, 6 =0, m<M and

;\.Z(nKRmin + ”g’ (U)”)”g;u (‘E)| ’

where gz, (£) is the derivative of g in the direction u—a« (u#a) and in the
point ¢ = a+#(u—a), B<d<1.

Proof. From Theorem 1.2, on the first level d

Rmin = (/47K (g () —d) + (Ig’ @)+ 1)2 = (Ig’ ()l +1))/2nK,,

therefore

g (u)—d = nKRia+ (g )|+ 1) Rmia -

And by d<g(a)—Rmin_(The first level becomes “type a” since M = g (),
m<M, 8= 0. Hence d+ Rmin<M = g(x).) we get g(u)—g(a)<nKRmin +
+ g ()| Rmin. But from Lagrange formula

gW)—g@=gu @ l(u—x)T|=0, if uzc«.
Hence

(= )Tl < Renin (MK Runin + 18" ()[])/ 182 (€)1 = A Rinin
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and we can see that « can be found in the starting rectangle of the new
level. (Therefore the new level can be considered as “first level”’). The further
part of proof is comparable to proof of the Theorem 2.1.

Remarks. (1) lim gi,(§) = 0= 21— .
d~g(e)

(2) If in place of g;,(¢) we use gi, (1), then the formula of A is useful
also in practice. (i and u are approximations of « one after another.)

(3) If M=g(«) and only Theorems 1.3 or 1.4 can be applied to g, then
we also can give theorems similar to Theorem 2.2.

(4) In the numerical examples we worked with 1 = 2.

3. FORTRAN program of the method and numerical examples

The input parameters of the program are: n = N, e = EPS, 4 = DEL,
K=CC,m=AH, M =FH, A=8Z and b, = B(1), ¢, =C(1),...,b, =
= B(N), ¢, = C(N). After examination of a level the output parameters
are: time, serial number of the level, m, M, GM, number of examined points
on the level, g (u), uy, u,, ..., u,. (Starting value of GM is M and GM: =
=g(x), if g()<GM.)

The segment RECTANGLE gives data of the next rectangle. The seg-
ment FANDDER computes the values of f(x, d) = F and || f’ (x, d)|| = FD.
We have to exchange F and FD at a new example.

There are two “simplifications’ of theory in the program:

(1) if the type of level is “c”, then u:= u.
(2) if the type of level is “a”, then f(u, d) = fumin is in place of R (u) =
= Rmin, Which often gives an identical result and it is more practical.

The complete FORTRAN 1900 program of the process (F and FD
belong to the first example) is as follows.

MASTER GMIN
DIMENSION A(144, 6), H (188, 6), IND (190),
IR (106), X(6), U(6), B(6), C(6), HH(6)
999 READ (5, 111) N, EPS, DEL, CC, AH, FH, SZ
IF (N.EQ.0) STOP
READ (5, 112) (B(I), C(I), I = 1, N)
111 FORMAT (18, 6F@.0)
112 FORMAT (12F0.0)
WRITE (19, 121) N, EPS, DEL, CC, SZ
WRITE (18, 122) (B(1), C(I), I = 1, N)
WRITE (19, 123)
121 FORMAT (3H N=, I2,6H EPS=, F7.5,6H DEL=
1,F7.5,5H CC=, F6.2,5H SZ =, F6.2)
122 FORMAT (11H INTERVALS:, 6 (2H [,F6.2,1H, , F6.2, 2H];))
123 FORMAT(/78H  TIME LEVEL UNDERM UP
IPER M GM POINTS G(U)  POINT U:))
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DO11=1N
U(ly, ALY = (B(1)+C(I))/2
1 HH() = (C(1)~B()/2
CALL FANDDER(U,#., UF, FDERN)
GM = FH
L,KEM =
22 CALL TIME(TT)
WRITE (16, 124) TT, KEM, AH, FH, GM, L, UF, (U(I), I = 1,N)
124 FORMAT (1X, A8, I8, 3F10.4,18, F10.4,12X, 6F9.3)
IF(FH—AH. LT.EPS) GO TO 999
D = (AH+ FH)/2
NI, L, IND(1) = 1
RMIN, FMIN = 1.E2¢
KEM = KEM + 1

DO2I = I,N
2 H(1,I) = HH(I)
26 DO3I=1N

3 X(I) = A(NL,I)
CALL FANDDER(X, D, F, FDERN)
IF (F.GE.§) GO TO 21
DO5I = I,N

5 U(I) = X(I)
GM, FH, UF = D+F
GO TO 22

21  IF (F.GE.FMIN) GO TO 23
DO41 = I,N

4 U = X(I)
FMIN = F
UF = D+FMIN

23 R(NI) = (SQRT (4% N % CC % F + FDERN % % 2)— FDERN)
1/(2 % N % CC)
IF (R(NI).LT.DEL) GO TO 24
IF (R(NI).LT.RMIN) RMIN = R(NI)
CALL RECTANGLE (N, NI, A, H, IND, R)
IF (NI.EQ.0)GO TO 25
L=L+1
GO TO 26

25 AH = D+RMIN
DO9I = I,N
RK = AMINI (SZ % RMIN, U(l)—B(1))
RN = AMINI (SZ % RMIN,C(I)— U(l))
HH(I) = (RK+ RN)/2

9  A(L]) = (2% U(1)+ RN—RK)/2
IF (D+ FMIN.GE.FH)GO TO 27
FH = D+FMIN

2 ANNALES — Sectio Computatorica — Tomus IV.
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27

24

62

41

61
63

IF (D +FMIN.GE.GM)GO TO 22
GM = D+ FMIN

GO TO 22

FH =D

GO TO 27

END

SUBROUTINE RECTANGLE (N, NI, A, H, IND, R).
DIMENSION A(108,6), H(190,6), IND(198), R(140)
KE = (IND(NI)+1)/2

Kl = 1-4% KE+2x IND(NI)
HS = (H(NI,KE)— R(NI))/2
IF(HS.LE.#)GO TO 61

NN = NI

NI = NI+1

S = (H(NN, KE)+ R(NN))/2

DO 411 = 1,N

A(NLI) = A(NN,I)

H(NI,I) = H(NN,I)

A(NI, KE) = A(NI, KE)+KI %S
H(NI, KE) = HS

IND (NN) = IND (NN)+1

IND (NI) = 1

IF (KI.GT.) H(NN, KE) = R (NN)
RETURN

IND (NI) = IND (NI)+2

IF (IND(NI) NE.2% N+ 1)GO TO 62
NI = NI—

IF (NI.EQ.ﬂ) RETURN

GO TO 63

END

SUBROUTINE FANDDER (X, D, F, FD)
DIMENSION X(6)

F = X(1)% %2—2% X(I)% SIN(X(2)) -D
FD = 1+ABS (2% X(1)—2%SIN (X(2))) +
1+ ABS (2% X(1)% COS (X(2)))

RETURN

END

We tested our program on an ODRA 1304 computer. Now we show an

example for each of Theorems 1.2—1.4. The values ¢ = 6,01, é = 0,005,
A = 2 are fixed in our examples, and u denotes the final approximation of «.

Example 1. The global minimum of g (x) = x% —2x;, sin x, we computed

in three cases (the solution « is inner point, limit point, extreme point):
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by ¢ byeg m MK « u g(u) time (sec)

-1 2 02 —4 g3 {l;=n/2} {3,991; 1568 —@,9999 20
25 02 -4 86 {2;=/2} {2003, 1566} 00066 12
g 2 -20 -4 83 {0, 0} {0,009;—0,005} 03,0002 12

In the first case the ‘“‘naive method’’ works for 74 sec.
Example 2. The system of equations

g, () = (5, —2)x, =0 —2=x,=<4
g (X) = X24+Vx, +2x,—14 =0 —3=x,=3
g5 (X) = X, x;—4 arctgB,5x, =0 l=x,=5

has only one single solution {2, /4, 4} since {#,0, (57—V113)/8}¢ T (a, h).
Here we have computed the global minimum of g(x) = 3 |g; (x)], for M =
=g() =0, K=2, m= —16. We have m = —16 by the formula of Theo-
rem 1.3 (after estimation of 2 llgi (l), with Rmin~8,1||AT|| = 8,3 (on the
first level). The final (10th) approximation is:

(2,002; $,786; 3,998} and g(u)=0,0042 (in 85 sec).

With m~@ (or A~1 and m= —16) we can get much longer (or much
shorter) time. And if we cover T (a, i) by cubes with radius @1 (18000 pc.),
then the time is ~4@ minutes (if in all the centres an excluding-theorem
is used).

Example 3. For determining Chebyshev approximation of the table

—2/-110 12| with z= %
ﬂ6|ﬂ9|15|11lﬂ4 b+y?
we shall determine the global minimum of
g (x) = max G - —zil .
i Xo+Yi

Here we worked with the following data:
l=x,=5 l=x,=5 m= -5 (by Rmin~@1|AhT|, too),

M=1 K=55
and
I, ) = x5z +x, %524+ 1.

Formula of | f’|| is a rough formula since we always use the “worst” func-
tion. The final (7th) approximation of « = {3,2} is {3,004; 2,002} and g (u) =
= §,1009 (in 27 sec).
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