ON THE SMALLEST AND LARGEST ELEMENTS

By
A. VARECZA
(Received 15 May, 1987)

1. Introduction

Let H = {2, 25, ..., 2,} be a finite ordered set (say, different real num-
bers). However, the ordering is unknown for us. There are many cases when
we want to obtain certain information concerning H using pairwise com-
parions of its elements.

The simplest question of this type: Which is the largest (smallest) ele-
ment in H? It is easy to prove that any strategy finding the largest element
needs at least n— 1 comparisons.

Pohl [4] proved that at least n +[—g—l —2 ([x] denotes the smallest inte-

ger =Xx) comparisons are needed if we want to determine the largest and smal-
lest elements simultaneausly (see also [3], [5]).

To find the two largest elements, n+ [log, n]—2 comparisons are needed
[2] (for similar results see also [1], [3], [5]). Moreover it is proved [6] that
it is impossible to find a pair of consecutive elements with a smaller number
of comparisons. In a recent paper [7] it is proved that we need 2 (n—2) com-
parisons if we want to decide whether z; and 2; are neighbouring elements
in H (z;, z; are arbitrary elements of H).

In this paper we shall solve the following problem: What is the minimal
number of comparisons needed to decide whether 2; and z; are the largest

and the smallest elements (in this order) in H. The answer is n+[ l

(n>3) We also solve the modified problem, when the question is if the pair
2; coincides with the pair of the largest and smallest elements, regardless
of tﬁelr order.

The result is, surprisingly, slightly more than n+[%]—3, namely,

n—1
n+

—2(n=3). Our method gives a new proof for Poh!’s result as well.
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2. Notations, definitions

The first pair to be compared is denoted by S, = (¢, d). If the result of
the comparison is ¢>d then the value of the variable ¢, is 1, and in the oppo-
site case (c<d) ¢; = 0. The choice of the next pair S, (¢;) depends on ¢,
say Sy (g;) = (€(ey), f(¢,))- Define ¢, to be 1 if e(e;)>f(e;) and to be O other-
wise. Continuing this procedure in the same way,

Q)] Sic1(er 82 -5 8i-1)

is defined for some 0— 1 sequences ¢,, ¢,, ..., ¢;—; With the restriction that
if i=2, and S;_; (¢y, &, - .., &) is defined then S,_, (e, &5, - .., £i—p) i8S
defined too. The value of ¢, is 1 or O according to whether the first or the
second member of S,_, is larger. A set of questions put in this way will be
called a strategy suitable for deciding the problem ‘“‘whether or not z; is the largest

and z; is the smallest element in H” iff for all sequences ¢;, &, . . ., &; if
(2) Sl—l (81’ Egy « v vy El—l)

is defined, but

(3) Si(e1 €25 -+ -5 8)

is not, then

the answers &, &, ..., ¢ (to the questions S,, S (¢,),
l. .y 8121 (eyy - -+, &-,)) decide the problem, whether

or not 2; is the largest and z; is the smallest element
in H.

4)

We use the notation & for such a strategy. We say that a strategy & is fin-
ished for the sequence ¢y, ¢,, ..., g if conditions (2)—(4) are satisfied. The
maximum length of the sequence ¢, ..., ¢ finishing the strategy is called
its length. 1t will be denoted by L (&).

Denote by T; (e, &, . . ., &) the inequality corresponding to ¢;.. Now we
can express condition (4) in a modified way:

The inequalities
(5) Tl (81)) T2 (817 52)’ RS Tl (51, €9y - 1y 31)

decide whether or not 2; is the largest and z, is the smallest element in H.
Let the situation after answering the question S,_; (¢, &, - - ., £;—1) be called
the situation (e, €, . . ., &) of &, that is, we have then the inequalities T; (¢,),
Ty(e1y€2)y - -5 Ti (€15 €9 - - -, &). This system of inequalities will be denoted
by &;. The extension of &; consists of all the inequalities 2, <2, which can be
deduced from &;. It is proved (Lemma O in [7]) that if 2, <z, follows from &;
then there is a chain of inequalities

2, =Z,l<...<2,—k =2
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where 2, <2,,  (1=v<k)arein Z,. We now introduce the concept of graph-
realization. Let us regard the set H as the vertex set of a directed graph G.
Let the comparison of any two elements of H be an arc in G, directed from
the greater element (vertex) to the smaller one. In the state (e, €, - .., &)
let G' denote the graph derived in this way. H is totally ordered, so G con-
tains no directed cycle. By the above correspondence, with every state of &
we associate an oriented graph. It follows from the correspondence that in an
arbitrary state (e, ¢, ..., ¢;) of $ the relation e>f is realized if and only if
a directed path leads in G! from e to f. If & is finished and 2, is the largest and
z; is the smallest element, then (by Lemma O of [7]) there exists a directed
path from z; to all the other elements of H and there exists a directed path
to z; from all the other elements of H.

We can define in a similar way a strategy which can determine the
largest and smallest elements simultaneausly, and another strategy which
can decide whether z; and z; are the largest and smallest elements in H (re-
gardless of their order). For this purpose it will be better to use the nota-
tions 2, =2, =x and z; =2, =Y, i.e. H={X,9,23, ..., 2,}.

Let &, be a strategy which can define the largest and smallest elements
of H simultaneausly; let &, be a strategy which can decide whether x and y
are the largest and smallest elements in H (regardless of their order); and let
&4 be a strategy which can decide whether x is the largest and y is the smal-
lest element in H.

3. The results

We shall prove the following theorems.
Theorem 1. (Pohl [4])

(6) minL(51)=n+-l]—2 (n=2).
S1 2
Theorem 2.
) minL(52)=n+_n—ll—2 (n=3).
Sz 2
Theorem 3.
8) min L(8,) = n+ (%]—3 (n=3).
S3

Proof of Theorem 1. It is easy to find a strategy satisfying (6) (see [3],
[4], [5))-

It remains to prove
©) L($)=n +I%l-2

or any strategy &,.
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This will be done in the following way. An algorithm will be given which
determines a branch of the strategy, that is, a sequence ¢;, ¢, . . ., ¢, finishing it.

This branch will have a length ;n+l%]—2. The algorithm determines

the &’s recursively. Partitions of H will be used. The partitions will also be de-
fined recursively, for any situation (g, €,, . . ., ¢;) along the indicated branch.
The branch and the partitions will be determined simultaneously. A parti-
tion has three classes: H = N'UK/UA'.

At the beginning A° = H, N° = K° = .

Suppose that ¢;, &, .. ., ¢ and Al Ni Ki are already defined. Then the
next description determines ¢;,, and A"‘f1 Nit1 i+l

Let S;(ey, - - ., &) = (g, h). The new values of &, ;, A'*1, etc. will depend
on the classes containing g and h, respectively. The cases obtamed by inter-
changing the role of g and h will not be treated separately. As regards Af+1
etc., we shall only indicate the new class for an element. Then it will be ob-
viously omitted from its old class. The system of inequalities

Ty (&), Ta(egy &2)y - -5 Tiey, €2y + -y &)

is denoted by &; where ¢,, ..., ¢ go along this branch.

Definition of the (i 4 1)-st point of the branch:
case 1: g, he A¥ ¢, =1, ge Ni*1 heKit1
case 2: g, he N' (K') ¢;,, = arbitrary, except if it is determined by the

extension of &;

case 3: geNi, he AlUK! g41 =1, heKit?
case 4: g€ Al, heKi gp1 =1, gENITL,

In this way we defined a branch ¢, ..., ¢ of the strategy &,. It will be de-
noted by B. The length |P,| of P, is [. We shall prove l§n+[—g—]—2 with

a sequence of lemmas, valid for this special branch.
Lemma 1. a€ N'(K') implies a€ N"(K") for any r>i.
Proof. It can be easily seen by checking the cases of the definition of P,.

Lemma 2. Suppose that a<b is an inequality in &; and aeN' (b€ K).
Then be N (a€ K¥) follows.

Proof. It is sufficient to prove the first statement. The other one follows
analogously.

Thus, suppose that a<bisin &, and a€ N'. It follows that S; (e, . . ., ¢;) =

= (a, b) (or (b, a)) for some j<i and €jv1=0(or = 1).

It follows from Lemma 1 that ae N/U AJ. If a€ N/ then the statement
follows from case 2 evidently.

If ac AJ, then be AJUNJ and be N/ +1, ac Ki+1 follows from cases 1 and 3
and a€ Ki follows from Lemma 1, and this is a contradiction.

The lemma is proved.
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Lemma 3. If a¢ N' then there is an inequality a=b in &; with be KL
Analogously, if a€ K’ then there is an inequality a<b in &; with be Ni.

Proof. We prove the first half of the statement only, the other half can
be proved in the same way. Thus suppose that ae Ni.

Let (¢, ..., € ;) be the situation for which a¢ N/ but a¢ Ni+1, It follows
from cases 1 and 4 that a occurs in the question S; jey -y ep),8ay Sjley -y
e;) = (a, b). It follows from cases 1 and 4 that aeAJ beAJUKJ and aeNi+1
beKJJr1 Lemma 1 implies b€ K.

The lemma is proved.

Lemma 4. If the strategy is finished for the sequence e,, &,, .. ., ¢ then
Al=0.

Proof. Suppose on the contrary that A's=@. If ac Al, then a is not in
&, and a can be the smallest and largest element of H. This contradicts the
supposition that the strategy is finished.

Let us turn back to the proof of (9).

Suppose that our strategy & along branch P, is finished after the I-th
comparison. It follows from Lemma 4 that A!= ). Consequently,

IN'UK!| = n

holds. Let |[N!| =i, |K!| =j where i+j = n. Consider the graph G'. Denote
the largest element by x and the smallest one by y. It follows from the de-
finition of P, that xe N!, y¢ K!, and to all elements (#x) of H (N') there is
a directed path from x, and from all elements (#y) of H (K') there is a di-
rected path to y. First we consider those inequalities a<b in &; where a€ N,
be N'. Take the corresponding edges in G!. There is a path from x to any
element of N'. This path cannot go through an element of K! by Lemma 2.

Therefore the subgraph induced by N! is connected. Consequently there
are at least i—1 edges among the vertices in N’. That is, the number of in-
equalities a<b in &, where a, b€ N' is at least i— 1. Similarly, there are at
least j—1 inequalities with a, be K.

Consider now those inequalities a<b in &, where a€ K, b€ N'. One of

i and j is at least [%] Suppose that | N/| 2[%] holds. Then, by Lemma 3,

there are at least as many such inequalities in &, Summing up our results:

1zi—1+j—1+[il=n+[£]_
2 2

Theorem 1 is proved.

Proof of Theorem 2. It is easy to find a strategy satisfying (7).

Let x and y be these elements of H, we want only to decide whether x
and y are the largest and smallest elements.

Let Sy = (x, 23), Sy (&1) = (¥, 25)- o

If =1( =0) and e, =1 (e, = 0) then &, is finished and the answer
is no.
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Suppose that ¢, =1 (¢, =0) and ¢, =0 (g, = 1), that is, x=>2; (x<2z;)
and y<z; (¥y>2;). We determine the largest and smallest elements of H—
—{x, ¥, z;} simultaneausly. It follows from Theorem 1 that we can do it by

making n—3+ n_;i —2 comparisons.

Denote by a(b) the largest (smallest) element of H—{x, y, z5}.

Now we compare elements x and a (y and a) and elements y and b (x
and b). If x>a (y=>a) and y<b (x<b), the answer is yes, otherwise the an-
swer is no.

The number of comparisons is

2+n-3+[”‘3]—2+2 - n+[”—1 ]—2.
2 2

This proves:

minL(32)§n+ln—ll—2.
S2 2

It remains to prove

(10) L(&Z)gn—i-[n;]l—Z

for any strategy &,.
This will be done similarly as we have proved Theorem 1. Consider
branch P, of strategy &,. We shall use the subsets A, N, K of H, similarly as
we have used them in the proof of Theorem 1. Now we shall use a modifica-
tion of P.
Let S; (e, - .., &) be the first comparison involving the element x or y,
that is, the comparisons S;(ey, &, . . ., ¢;) with j<i do not involve x and y.
We can suppose that x occurs in S;(ey, ..., &). If S;(ey, ..., &)= (g, h)
then we define the (i + 1)-st point of the branch:
case5: g=x,h=y,¢,,=1, xe NIt ye Ki*t and if S, (&g, ..., &) = (x, b)
(beH,r>i) then e, =1, and if S, (e, ..., &)=, b) (beH, r=>i)
then ¢,,, =0.

case 6: g=x, he KIUA! g, =1, xeN'*1, he KI*1, yeKI*! (hs#y) and if
S, (&) - -y 8) = (x,0) ((3, b)) (r=1i), then ¢, = 1(0) (b€ H).

case 7: g =x, hé N' g;,, = 0, xe KI*1, ye Ni*1 and (h=y)if S, (ey, .. ., 6) =
(x, ) (7, b)) (r=1i, beH) then ¢,,, =0(1).

Denote by P, the modification of branch P,. Obviously, if strategy &, is fin-
ished along branch P,, then the largest element is x (y) and the smallest
one is ¥ (x) in H. We can see easily that Lemmas 1, 2, and 4 apply here too,
and the setting of Lemma 3 is not realized for element y only.

Suppose that our strategy & along branch P, is finished after the I-th
comparison.

Let |N!/| =i, |K!| =/ (i+] = n).
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Similarly to the proof of Theorem 1, we can determine the number of
comparisons easily. The number of inequalities a<b in &, where a, be N!
(a, be K is at least i—1 (j—1), and the number of inequalities a<b in &,

where ac K!, be N! is at least I%ll

Summing up our results:

1.%i—1+j—1+[—"—;—1] = n—2+[n_]].

2
Theorem 2 is proved.

Remark. It is easy to see that if n = 2 then the minimal number of com-
parisons is 0.

Proof of Theorem 3. It is easy to find a strategy &, satisfying (8). For
n=3letS,=(x,2),S;(e)=(,2,), then &, is finished and (8) holds. Sup-
pose n=4. Let S, = (2;,2,) and suppose that e =1 holds. Let S;(g) =
= (X,23) and Sy (e, &) = (1, 2,). If &=0 or g5 =1 then &, is finished and
the answer is no.

Let &, =1 and ¢; =0, that is, x>z, and y <z,. Now we determine the
largest and smallest element of H—{y, x, 2,,2,} simultaneously. It follows

from Theorem 1 that we can do it by making n—6+ n—4

comparisons.

Denote a (b) the largest (smallest) element of the set H—{x, y, z;, 2,}.
Now we compare element x with element a, and element y with element b.
If the results are x>a and y <b then the answer is yes, otherwise the answer
is no.

The number of comparisons is

3+n—6+[n—4]+2 = n+[1]—3.
2 2

This proves:
min (33§n+[£]—3 (nz3).
S3 2
It remains to prove

) L((Sa)szr[%]—S

for any atrategy &, (n=3).

Consider branch P, of strategy &,.

We will use subsets A, N, K of H, similarly as we have used them in the
proof of Theorem 1, and now we shall use a modification of P,.

Let N° = {x}, K® = {y} and if for any j S; (e, &, - - -, &;) = (x, h) (0, h))
holds then ¢;_, =1 (0). Denote by F; the modification of branch B,.

Obviously, if strategy &, is finished along branch B, and the answer is
yes, then the largest element is x and the smallest one is .
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We shall prove that the length of branch B, is at least n+ %]—3.

We can see easily that Lemmas 1, 2, and 4 apply here too, and the set-
ting of Lemma 3 is not realized for elements x and y only.

Suppose that our strategy &, is finished along branch B, after the [-th
comparison.

Let |[NY| =i, |K'| =j (i+]=n).

Similarly to the proof of Theorem I, we can determine the number of
comparisons easily.

The number of inequalities a<b in &, where a, bé N! (a, be K') is at
least i—1 (j—1), and the number of inequalities a<b in &, where a€ K/, b¢ N!

is at least n-2 .
2

That is, the length of branch P, is at least
i—l+j—1+[n—_2] - n+[i]—3.
2 2

Theorem 3 is proved.

Remark. It is easy to see that if n = 2 then the minimal number of com-
parisons is 1.
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