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In his classical paper {4] Jacobi has given a constructive proof for the
following well-known theorem.
Given an nxn real symmetric matrix, A, there exists a real orthogonal
matrix U, such that UAU* is diagonal.

Jacobi constructs the orthogonal matrix U, as an infinite product of
orthogonal matrices of the form

1

Cos sin «

—sina COS &

His method has the following advantageous properties:

— It is always convergent;

— It is a simple iteration procedure;

— It gives all the eigenvalues simultaneously;

— It is quadratically convergent, whenever all the eigenvalues of A
are distinct;

— Every step of the algorithm is a similarity transformation with
optimal error bound.

The last property means the following:
For an invertible matrix V, the similarity transformation

A-VAV-1
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is a linear transformation on the space of nxn matrices. The norm of this
transformation is ||V||-||V ~1||, the condition number of V, and this bounds
the error-growth in the following manner

WVAV=1=VAV-1= | V- [V-4- JA- A].

I't is easy to prove, that for every matrix ||V]|-|[V~Y|= |, and equality holds
iff V = cU, where U is an unitary matrix. Thus it is worthwhile to use uni-
tary transformations from the view of point of error-growth, too.

Since the late forties, when Jacobi method was rediscovered, several
generalizations of this method have been proposed for the eigenvalue prob-
lem of not necessarily symmetric matrices (See [1], [2] and [3]).

K. Veselic solves the problem for real matrices, where the real parts of
the eigenvalues haven’t multiplicity more then double [2]. P. J. Anderson
and G. Loizou solve the case of diagonaliable complex symmetric matrices
[1]. However both of them use similarity transformations, which are not
unitary, so the error-growth after k steps can be exponential in k. The class
of matrices for which convergence proof is available doesn’t contain the class
of normal matrices.

The aim of this paper is to extend Jacobi’s method for arbitrary (comp-
lex) normal matrices, preserving the advantages mentioned above. In addi-
tion we prove, that a special group generated by two-dimensional rotations is
dense in the group of unitary matrices.

Definitions, notations

Let us denote by C™*" the set of nxn matrices with complex elements.

For AeC™n g, is the i-th element in the j-th row of A. AX is the Hermitian

transpose of A, with elements af; = a;;,, where @, is the complex conjugate
of a;.
ji

The matrix AcCmn js called

Hermitian if Ax=A

anti-Hermitian if Ax= ~A

normal if A*A = A Ax

unitary if AA* = [, where / is the unit matrix.

The set of Hermitian, anti-Hermitian, normal and unitary matrices from Cn<»
will be denoted by Hnxn, AHmxn Nmxn [Jnxn respectively. For A€ Cnxn we denote
by S%(A) the sum of squares of absolute values oi ali subdiagonal elements
of A, that is

The symbol i will be used for the imaginary unit vector and for row ot column-
indexes for matrices; we hope, this will not cause any confusion. For j>1i,
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and for arbitrary real « and 3 we introduce the following unitary matrices

1

COS « ¢'f . sina — i

—sin« etF.cosa —]

\

Jacobi method for Hermitian and anti-Hermitian matrices

The following algorithm is an easy extension of jacobi’s classical me-
thod. We formalize it for the sake of explicit formulas and for the purpose of
the further sections.

Algorithm I. An n%n matrix A is given, which is either Hermitian or
anti- Hermitian.

k:=0
At = A
e = { 1 if A is Hermitian
i if A is anti-Hermitian

1. Let j, and i, be the row and column index respectively of the off-dia-
gonal element of A, with maximal absolute value.
If a;, i, = 0, the algorithm is finished.
If not, we choose §, such that

el Pk By iy = € |y i |

and choose «, in the following way
. T,
apt=— i i, = g,
else
1 2¢|aj, i,
Ty
ak:=TArCtg———-—————k -
< Bige iy~ Yy i

. — [Tk i ig*
Ak+1 « Uak, ﬁk Ak Uak, ﬂk

k:=k+1
Go to 1.
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Theorem I. Let AcHmn(Jy AH™n, Algorithm 1 generates a sequence of
matrices A,, A,..., which are similar to A. If this sequence is finite, then
the final A, is diagonal. If the sequence is infinite, then it converges to a fixed
diagonal matrix with the eigenvalues of A in the main diagonal.

A detailed proof of this theorem can be found in [3] for the case of real
symmetric matrices, Hovewer all the arguments remain valid in the case
of Hermitian and anti-Hemitian matrices, so we don’t repeat them, just
notice, that the proof is based on the relation

S A,.y) = SHAY ~ |a, fkizs[l B »»—]-S2<Ak),

n(n—1)

and on Gerschgorin-theorem.

The Jacobi-group

For fixed n let us consider for all />, and for all real « and 8 the matri-
ces Uy %. 1t is easy to compute, that

(U237 = Ugly Ul o)

so the finite products of these matrices form a group, which we call jabobi-
group. The aim of this section is to prove that the Jacobi-group is dense in
the group of unitary matrices.

Theorem II. For UcU " there exist sequences of indexes j,, i, and
real numbers «, 3, such that j =i, and

e r
im sls 74 —
limy jy U -U il‘ =0,

L is:l

Proof. First of all we remark, that whenever a matrix has all distinct
eigenvalues, its eigen-subspaces are one-dimensional, and these one-dimen-
sional subspaces depend continuously on the elements of the matrix.

Now let us denote by uy, u,, ..., u, the columns of U. We introduce the
following Hermitian matrix

n
A=k ug-uf.
k=1

Matrix A is Hermitian, and has eigenvalues 1, 2, ..., n with eigenvectors
iy, U, ..., u,. Applying the diagonalization process of Algorithm I to the
matrix A we obtain a sequence of products

25 By

k .
Pk — [[ U‘sv Js
s=1
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such that

[

P, AP} -

A.

0 n

Matrix P, AP} has eigenvalues 1, 2, . .., n with eigenvectors P, u,, Pyu,, .. .,
P, u,. The limit-matrix A has the same eigenvalues with eigenvectors
e, 0,. .., ¢, where ¢, is the ith column of the unit-matrix.

A has distinct eigenvalues, so the set of its unit-eigenvectors depends
continuously on its elements up to a constant factor. So there are real numbers
¢k (i =1, ..., n) and a permutation matrix P, such that

gimHPkui—e""”?Pe,“ =0 i=1...,n.

This means that P§P A, —U, where 4, is a diagonal-matrix with elements
i .
¢""% in the main diagonal.

It is easy to show that .1, and P are finite products of matrices of the
form (1), so the theorem is proved.

Diagonalization of normal matrices

In this section we give an algorithm for the diagonalization of an ar-
bitrary normal matrix.

Theorem III. Let Ce N**n. An unitary matrix U, for which UAU* is
diagonal can be given as an infinite product of matrices of the form (1).

We give a constructive proof. The unitary matrix U will be constructed
in the form

AN
(2) Ul P e}

*
U,

where Q is a unitary matrix, P is a permutation matrix, and the third multi-
plier is a block-diagonal matrix with unitary blocks U,,..., U,. (For the
sake of theoretical completeness we remark, that an arbitrary permutation

matrix is a finite product of matrices of the form (1) with o« = — i;— and

g = 77")!

Qur algorithm for constructing U consists of three phases. Phase I gi-
ves us the matrix Q, Phase Il gives the permutation P, and Phase 111 gives
the blocks U,, U,,..., U,

r
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Phase I. A: = C+C*

Compute the unitary matrix Q by Algorithm I, for which QAQ*
is diagonal

D: = QAQ

Before describing Phase 11 we state the following

Proposition
and
4 d;; =0 whenever Red;; > Red ;.

Proof. (3) is an immediate consequence of the fact, that Q(C+C*) Q¥
is diagonal. Using the normality of D

n

de sj Z 1; Jjs*

However by (3)

du d5] - ‘[xs)( ) = dxs js for 5 l’]
Thus

dyy dyg it du = dy djﬂ'dlj dyj s
or equivalently

dji(dT'j'i_djj) = (dii‘f“ri)dji-
The final relation implies (4).
This Proposition means that D can be transformed to a block diagonal form
by permuting coordinates.

Phase 11. Compute the permutation matrix P, such that for B: = PDP*
the values Reb; i = 1, 2, ..., n form a monotone increasing
sequence.

Because of (4) B is a block-diagonal matrix with blocks By,. .., B, with
dimensions ny, n,.. ... n,, where

and Reb; is constant in each block.

Phase I1l. Fors = 1,2, ..., r Aj: = B—k,-Ingxn, where B is the s-th
block of B and k; is the constant value of Reb;; in the s-th block.
Fors = 1,2, ..., r compute the matrices U e U™ s** s for which
U, A U is diagonal. These matrices can be calculated by
Algorithm I (being A, anti-Hermitian).
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We have finished the description of our algorithm. Clearly the similarity
transformation, which diagonalizes A, will diagonalize B too. So Theorem
111 and the correctness of the algorithm are immediate consequences of the
correctness of algorithm I, of the Proposition and remarks between Phase 11
and Phase I11.
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