AN OPTIMAL SEQUENTIAL ALGORITHM FOR THE UNIFORM
APPROXIMATION OF CONVEX FUNCTIONS ON [0, 1]2

By

G. SONNEVEND
Dept. of Numerical Mathematics and Computer Science
1088 Budapest, Muzeum krt. 6 —8.

( Received February 16, 1982 )

Introduction

Motivations and definitions. In applications (geology, microscopy,
engineering design, construction of graphic displays, image transmission
(coding) systems, and in mathematical (linear and non-linear) programming,
optimal control theory, differential games) the following problem often
arises: an unknown, real valued function x is to be uniformly approximated
over a domain, G,, say G, = [0, 1]7, based on N (point) evaluations

(1 xt)=¢, i=1...,N, 1eG,

— (for other measurement specifications see below, section 4) —, and natu-
rally, based on some a priori knowledge about x.

The latter is usually expressed by x€ K° where K° is a compact subset
of the Banach space of continuous functions over G,, C(G,).

An N step algorithm of approximation consists in (1): Specifying the

choice tN = (t,, ..., ) which might be passive (i.e. simultaneous) or sequen-
tial, i.e. given by sequence of functions AN = (A, ..., Ay) and the rule
@ hi= AN(K®), 1= x(t),

fii= Aycpa(pepi=1, .. i=1,K%, i=1,...,N,

and (2): in giving a pointwise approximation, a, of x based on the information
collected, (i.e. on ¥, ¢N and K°), ¢y = (Cy, ..., Cy)

3) alt,t,c, i=1...,N, K%, (€G,.

Often the main cost of the algorithm is measured by N, i.e. compli-
cated functions (computations), (AN, a) are allowed in order to achieve a
small global error

(4)  e(AVN, K% :=sup {e (AN, x)|xc K%, e(AN,x):=e(tN (AN, x)x)
e(tN, x):=sup {|x(t)—a(t, t, x(t), i=1,..., N, K%| |teG},
where tN (AN, x) = {t,(AN,x), i =1, ..., N}, are defined by (2).
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The global error e(tN, K°) of a passive algorithm AN =N is defined
similarly. Naturally in the construction of the algorithm, especially if we are
interested only in the order of magnitude of e (AN, K°) with respect to N, N
is regarded as a free parameter, and of special interest are those ;\‘,algorithms
in which A"%+! may be regarded as a continuation” of A"k (that is
tN"(AN", x)gtN"'“ (AN"+', x), for all x) at least for a subsequence N, — .
For a more detailed and general definition of sequential approximation prob-
lems in B-spaces, see [2], [4]

If the set K° is convex, and has a centre (i.e. is centralsymmetrical,
or balanced), then ¢ (N, K%: = LIHE(AN, K®) =infe(t™, K°):= ¢, (N, K°),

t

see [1], [2]. Here we show that for natural classes K° of convex functions

(which are far from being centralsymmetrical, but rather are like simplices,

i.e. in linear one to one correspondence to the class of positive meastures, via

solution of the Laplace (or Amper—Monge) equations, see [9]) the use of

sequential N-step algorithms allows to achieve significantly (with respect to

order in N) less global error than the use of passive ones, see Theorem 1 below.
Here we assume that G, is the “interval” [0, 1]?, and

(3) K®={x|xconvexint, x(t)=1¢},i=0,1,...,2p fixed} = K°(x, G,),

where the points f? are the centre and the vertices of [0, 1]
In fact, as a corollary, a good (optimal order) algorithm results, see
Remark 1 below, for the more general classes

(6) K°(m, M) = {x|Spectrum D,x<[m, M], x(1?) = ¢, i =0, ..., 2P fixed}

where D, x(f) denotes the Hesse matrix (of second derivatives). (5) is the
special case m =0, M = «, and in (6) K°(m, M) is in fact understood as
the closure in C(G) of the C? functions with everywhere defined D, x; the
corrollary coming from the the observation that if z belongs to K°(m, M),

then x; = z—--;»r m||t|* and x, = -;-M”til'-’—z, hoth belong to K°(0, =),

(when not stated otherwise we use the usual notations ||-|| and {u, 1, for
euclidean norm and scalar product in RP).

Let us note that a similar approximation problem for convex bodies
x of RpP™1 — (say for the class, K° of those lying in the unit ball, B)) —
is reduced to the above one — where each measurement gives the value,
¢; = m(d,;, x) of the support function m(d, x) = sup {{d, v)|véx}, deRPT! in
some direction d;, and the Hausdorff distance d (x,, x,) is used. The latter is
identical to the uniform norm in d€S, (RP7) = the unit sphere. An equiva-
lent norm arises if d is restricted to the surface of the unit cube, and then we
have our problem (1) — (5) because m(d, x) is convex in d, see [2], [5];
lgrad,m(d, x)||<1, d€S,, xCB,.

— In order to have a compact set K° in C(G) we should have assumed
(because otherwise there are discontinuous functions in KP°), that in (5)

(7 llgrad x (t)|| <g,, for teG,,
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for some constant, g,, where this, restricted set will be denoted by K°(g,). For
reasons which will be clear later [:we do not need any information about g,
in constructing (implementing) the proposed algorithm], we do not include
(7) into (5), of course the finiteness of the functional D (x, G) — see below

(16), which implies the optimal order [—3] of the error — is guaranteed a

p
priori if (7) is assumed. Of course, by the convexity in f, the functions x in

K, are continuous and uniformly bounded on any compact subset of the
open domain (0, 1)P.

— Instead of computing the optimal function, a, [defined by putting
in (4) an infimum, with respect to a(.), before the supremum] we shall
— for computational simplicity and without loss (what regards to the order
in N of the global error) — define the function a, used in (4), “locally’:
over the “‘subintervals” GV, i = 1,2, ..., into which G is decomposed (see
below) to be the analogons, a (G¥, x), of the function a(G,, x):=a (K" .)
defined by — for K° = K°(x, G,) —

%) a (Ko t)y:=sup {x(t)|xeK®, {€G,.

Of course a (K9, f), (thus each of a (G, x)) is a convex, piecewise linear func-
tion over G, (resp. GY), yet, in general the function a thus constructed will
not be convex in {, i.e. coincide with the function

ag (4, tN, Ny:=sup {x () |xeK®, x(t,)=c¢c, i =1, ..., N}.

Note that for p = 2 the function a (K, ) is composed from, at most, 4 linear
pieces. The function e (tV, x), from (4) is thus giving the diameter of the set
of localization, [(tV, x), in the space L. (G).

Many of the constructions, and methods of proof, which shall be pre-
sented below, are valid for arbitrary values of the dimension, p. The solu-
tion for the case p = 1, which is by no means trivial, has been given in earlier
works, [5], [8], and can be easily obtained (reconstructed) using the methods
(hints) given below. Here we solve the case p = 2 completely, (and also
indicate those points, whose generalization, for p=3 is not yet obtained,
in section 4).

Proposition 1. For the class (5) — even when (7) is assumed — there
exist constants k; (K% g,), i =0, 1, such that

1 2
e,(N, K)=k,N * and e/(N,K)=k;N °
where k; are positive if K° is non-trivial. [x]

— The class K° is non-trivial if there exist two different functions x;
and x, in it. The second inequality is then the consequence of the asymptotics
(12), see [10], because one can construct a function, x, which is strongly con-
vex and C? (has constant, positive definite Hesse matrix) over a subdomain
of G,. To construct x let max (x, —x;) be realized at a point, {, which is in-
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terior to G, — (by the existence of a gradient bound (7) —, G, = {t|x, ()=
=X, ()}

The support hyperplane to the epigraph of x, at (t, x, (f)) is over x, in
a convex subdomain, G,, of G, and a quadratic function, z, is chosen so that

2(t) = %(x1 () +x, (1), gradz(f) = grad x, () (1 —¢),
D,z()=dy I, d,>0,

g, d, being so small that, on the boundary of G,, z be smaller than x,, then
X:= max(z, x;) is convex on G, and quadratic over a subdomain, G,, of G,.
To prove the first inequality — for simplicity for the case p =2 — we
first choose in G, a square T = (P, B, P,, B), so that

2(R) =z(R), 2(R)=2z(R)

which is always possible be turning the original T" with sotne angle about its
centre. Important is only that the points (P, 2(P)), i =1, ..., 4, lie in the
same plane. Let w be the maximum of convex functions over G; which takes
at the vertices P, ..., P, and at its centre F, the same values as z, i.e. w is
linear over the four triangles [P, P, P,,,], and we can extend w beyond G,
to the whole G,, yielding in K°, a function w. If N is large then there exists
in one of the 4 triangles, formed by the centre and a side of T, a square, U,
similar and similarly posed to T, with sidelength not smaller than r; N-12,
where r; depends only on K°(g,), inside of which there are no points from
tN. Let U = (U, U, U, Uy), where U, U, is parallel and nearer to P, P, than
to B P, Let x; to be the maximum of convex functions (defined over G,)
which take the same values at the points P, P, P,;, P,, Q, where P,—Q =
= a(U,; —Q), as the functions z, z, z, z, w (resp.); and x, to be the maximum of
convex functions which take the values of x, at P, B,, U,, U,, U,, U,, P,, P,; con-
tinue both of then to be equal to w outside G,. The estimation |x;—x,||=
=r, N-2r,, r, depending on d, and G, — (which corresponds to the one
dimensional case of the construction) — is easily proved. For p=>2 a similar
construction can be given, one_better uses simplices (instead of cubes) in th
role of the sets Gy, G,, T.

Thus an algorithm AN, or more precisely, a sequence of algorithms
A= = (A, A% ...) isrightly said to be optimal with respect to order if; for
X€ KO (g,)

2
(10) e (AN, X)=k, ()N P, with Kk, (x)=k, (K°(g,), A)

where the constant, k, (K°(g,), E“), is independent of N. In Theorem 1 see
(19) we prove, that for p = 2, a simple algorithm is optimal (modulo a small
factor log N).

The notion of individually best N point approximation, a(?N, x), is de-
fined by the extremal problem for given (known) x

(11) e(N,x):= it%fe(tN, X) = e (N, x) =Px — ag (I, x (1), K)lceoy -
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For the analogous, essentially equivalent problem of approximation
of strongly convex, C? smooth bodies by polyhedrons in the Hausdorff
metrics the asymptotics of e (N, x) for N~ o, and arbitrary p has been ob-
tained in [10], the result of which implies that

G

I 2 2
(12) e(N,x)=r,N * [j ydet D, x () df]” +-0(N ”]i

where the constant r, depends only on p. Roughly speaking, the best system
of N nodes, for N large, must be such that their linear density, at a point ¢,
along the principal directions (eigenvectors) of D, x(t) be proportional to the
square root of the corresponding eigenvalues.

Our aim is to get exact upper bounds for finite N, and at present we
do not know whether for the multidimensional case, p=2, is it possible to
construct an algorithm satisfying (10) and yielding for each x, with con-
tinuous and positive definit second derivative, asymptotically optimal
nodes (for p =1 this is true).

The nodes which are yielded by the algorithm 1 below are not such,
however they are chosen according to the principle of equal local errors,
see |1], which is derived from an important property of the optimal set
of nodes.

§ 2. Description of the algorithm

— Inorder to describe the algorithm 1 (for simplicity, for the case p =
= 2), we need the following preparation. Let x be an arbitrary element of
K and let us denote by K (@, x) the set of convex functions, z, defined over
oninterval G = [ay, b;)X [as, b, ], of length [(G) = b, —a; = b, — a,, for which
the values 2(S8¢) = x(S9), i = 1,2, 3,4, 5, are fixed, where S¢ are the cen-

tre, %(uﬁ-am by +b,) and vertices of G. Thus K® = K(G,, x). The diameter,

d (G, x), of K(G,x) in C(G), (more precisely in L= (G)) is easily computed as
the maximum of distances of the value of x at a vertice of G from the value
of the linear function (at this vertice) which is determined by the values of
x at the centre and at the opposite vertice of G.— By a (regular) subdivision
of G — for given x — we mean the generation of four ‘“standard” sets
K(G;,x), j=1,2,3,4 from the set K(G, x), where each of G, is an interval

of half size, such that

4
(13) UG =G 2(G;NG) =0 for i=j.

j=1

(4 is the Lebesque mieasure). Let us define the indices 1, 2, 3, 4 in such a
way, that their growing order corresponds to the clockwise movement
round G, G, being the down left, G, the upper right one. These sets are thus
defined if we compute x — in addition to the five already fixed values of
x in K (G, x), in 8 new points.
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Algorithm 1. Choose a (small) positive number . Define by sequential
subdivisions a sequence of points, {7, 2, ..., 2 .., and interval subdivisions
{Gz, ..., G} inductively as follows. Let G = G, = [0,1]3, 13, ..., ? given
as in the definition of K°. Suppose that G, ..., G}, are already defined and
such that

3n
(14) U G} =Ge 2(GINGYH =0, if i#].

i=0
We order the lower indices, i, in the following way: say that G is before G;‘,
if for an interval, see (13), G = G, m=n, G}SG, and G? = G holds with
l=a<pB=4. Now let i = i(n) be the smallest, in this sense, index such that
the uncertainty in the values of x over G, as computed from the five meas-
urements [points (sj, x(sj)), s;€Gy, i.e. d (G}, x)] is greater than e. [In fact,
as it will be clear below, we could use the following criterion as well (re-
placing d (G, x) by 4(x, G))
(15) 4(x, G): = x () +x () + x(s§) + x (5§ — 4x(s§) = ¢, for G = G}y).
We define now the next new, 8 measurement points, f, .54, j=1,...,8 as

those eight which are needed in the subdivision of Gf{,,. Thus we have de-
fined the new points t7*1, j =1, ...,8(n+1)+5 and the new subdivision
(14), Gp*1, j=0, ..., 3(n+1).

The algorithm terminates at some (mega)step N = N (g, x, G,), i.c. after
8N function evaluations, when there exists no value, i(N), satisfying (15),
then obviously x is approximated by the locally constructed functions, see
(8), a(K(G?’), t), over each G?’, within accuracy e.

§ 3. Error estimation of the algorithm

An important role will be played by the functional
(16) D(x, G) = f {grad x (1), n(u))du,
JG

defined for an arbitrary interval G in G, and function x in K°, here

(grad x (u), n(u)),
where n is the outer normal to G at the boundary, is interpreted as an arbi-
trary value of the subgradient of the convex function x of t in direction of
the outer normal, thus the smallest value is

bg by
I,+1, = / ;;]dsz+f [a:]dsl, where = (s, 5,)
L 1 1
az ay
[ 0X ] (s,) = 0x(b;—0,s,) 9x(a,;+0,5,)
03, ] 05, 05, ’
0x ] 0x(s;, b,—0)  dx(sy, a,+0)
[ (§y) = A T
| 0 szJ as, 0 S,
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It is well-known that for C? smooth functions
a‘.’. 32
dst 0s2

(17) D(x,G):/‘Ax(t)dt, A=
G

is the Laplace operator, (otherwise Ax should be understood in a generalized
sense, see e.g. [9]).

In fact, for a function x in K°(x, G), which might be discontinuous at
the boundary of G, the value (16) can be defined (and be finite!) by a limit
procedure

D(x, G) = lim D (x,, G); where x,€C(G), x,-x, for n-o,

n

n—oco

uniformly on compact subsets of the interior of G. However, without assum-
ing an upper bound, g,, for the gradients over G,, e (AN, K°) cannot be even
made to converge to zero for N - .

Theorem 1. The number of function evaluations, i.e. steps, N = N (¢, x, G)
necessary to finish the algorithm 1 over G, for an arbitrary convex function, x,
with gradients less than g, is estimated from above by

2581(G)go
13 +

(18) N (e, x, G)SNO(S, X, G):: [8 D (x, G) log
&

where [ ], denotes the non-negative entire part, log is of base 2. [x]
Corollary 1. Choosing ¢ to be, for given N, the solution of (18): Ny (s, X,
G,) = N, we obtain an N-step algorithm, AN, whose global error is almost

of order —1 = ——,
p

[because of D(x, Gy)=4l(Gy)gy,—D1gD = %]

(19) e (A, KO)S%Jr”g—‘;\’,(GPl log 25 N 1(Gy) g, - <

Choosing ¢ = ¢, = 47% ¢, and performing (with memory) algorithm 1 with
e =¢, k=1,2, ..., we obtain an infinitely continuable algorithm, for which
essentially the same inequality (19) holds, at each step N, for the global error.
For the proof of the theorem we need the following two lemmas.

Lemma 1. For arbitrary G and x the following inequalities hold
(20) d(G, x)=A(x,0Yy=D(x, G). x|

Proof. The first (from the left) inequality was noted already in the de-
scription of algorithm 1 [by noting that the maximum of two non-negative
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numbers is less than (or equal to) their sum]. The second part can be inter-
preted as the statement that the simplest discrete approximation of the
integral (17) — (which is based on five evaluation of x, to get a discrete
approximation for Laplace operator at the centre of G) is always less than
the exact value of the integral thus approximated. The idea of the following
proof was communicated to the author by T. Fiala.

Let v, be the unit vector pointing from the centre of G, s§, into the ver-
tice s@, then

C
(21) X(S?)=x(s8)+l/§/ (gradx(s§+tVZv), vydt, ¢ = ’(20)
0

now because of {(gradx(s), v, = 1 [j: 9x(5) + ax(s)] the signs taking
S2

V2 s, 9
. —— . . ) 0x(S)
all possible combination depending on i, using the monotonity of Sy
08,
0x(s)) . . . .
resp. Y in s, (resp. S,) and summing (18) with respect to i, we ob-
JS.

S O2
tain (20). It is not difficult to construct many functions x, for which
24(x, G) = D(x, G). I¥]
Lemma 2. For arbitrary non-negative numbers 2y, 2,, 24, 24, L such that

21+2,+2,+2,>1, and L=1,
(22) 2 [8zlog L], = [8 (2 z,.) log 2L] —8. [x]
i i / +

Proof. By the simple inequalities log L=0, and log 2 = 1
2 u)=[2ul], for u;=0.][x

Proof of the Theorem 1. We show, by induction with respect to the
value of N, that (18) holds. Let us assume first that Ng(e, x, G) = 0, then
because of the fact that

23) I(Gm%zﬁ”

can be assumed (otherwise the formula (16) shows, by Lemma 1, and a
simple inequality that, d(x, G)<e¢, thus N(e, x, G) = 0), we obtain that
D (x, G) must be less than ¢, thus again by Lemma 1, d (x, G) <e, i.e. N (g, X,
G) = 0. The function N (g, x, G) satisfies — for a subdivision (13) —

4
8+ D N(e,x,G)=N(e, x, G).

j=1
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Thus we have to prove that if N(e, x, G)>1, i.e. d(x, G), (or 4(x, G))>¢,
then

4
(24) 8+ > No(e %, G)=N, (e, %, G).
j=1

This is by the additivity of the functional D(x, G) with respect to sub-
divisions, a consequence of Lemma 2: put

2, =D, G)et, L = L(G)=50.28(G,) = —'l;«L(G). 1%

&

Remark 1. For the class K°(m, M), see (6), with finite m, M the trans-
formations z2—x, (z, m), z—~x, (2, M) lead to the following algorithm. Perform
simultaneously, for x; and x, the algorithm 1, as described, replacing the
criterion of subdivision (15) by

min (4(x,, G), A(x,, G))=>¢, for G = Gp,

and define the approximation a (G, z), for each G = GV, as

1 (1 1
n [Tz—m 12 +a (G, %)+ - M2 ~a (G, ).

Remark 2. A more simple, infinitely continuable variant of the algo-
rithm 1 is the following. Instead of fixing a number &, let us perform the
sequence of subdivisions according to the following rule: let i (;7) be that value
of i for which d(x, G), (or 4(x, GM)) is maximal. The number of subdivisions
(steps), N, (e, x, G), needed to reach a global accuracy &, can be estimated
with the sane inductive method, and turns out to be majorated by the same
quantity Ny (e, x, G).

We conjecture that, as the previous proof indicates, the logarithmic
factor cannot be eliminated from the error estimations (18), (19). It is easy
to see, that for each, fixed x, in K°, with continuous and positive definite
Hesse matrix, asymptotically, for N - <, (see (17))

(25) e(tY, x) = 4—:;’V—D(x, Go)+o(N-Y), 1N = 1N (AN, x).
Indeed, because of (15), (17), for large N, and continuous 4x
(26) fo(t)dtz[S %+1]2e.

It seems true that no (similarly simple) optimal order algorithm (in
the global sense, (10)) exists for which the asymptotic error would be expres-
sible with the same main part as in (12); note that

2
27) Ax (t)=2(det Dy x(f))2, with equality iff 0 x =0,
05,08,

8 ANNALES Sectio Computatorica — Tomus I11.
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and
?x  Px

0s: 083

The reasons behind this statement and further motivation concerning
our algorithm | (its stability properties) will be given in the next section.

§ 4. Generalizations and further comments on the algorithm

The most interesting question is, of course, whether or not the straight-
forward generalization of algorithm 1 to the p=3 dimensional case yields
an optimal (with respect to order of the global error) algorithm and if so is

that order equal to —-Z-], the lower bound, given by (12). While the an-

p
swer to the first question seems to be positive, concerning the second one
the following remarks (negative results, resp. conjectures) are stated, which

indicate, that the algorithm 1 yields the optimal order —3] only for such
classes of functions x, for which l<1xllep,, (G)< o uniformly.
A generalization of the inequality (20), i.e. Lemma I, would be
(28)  d(x,G)=4,(x, G)=c,*~?(G) D (x, G), for some constant, ¢,
where D (x, G) is given by the obvious generalization of (17) and (16),

A,(x, G): = %x(PF)—Ql’x(R)G).

1
The first part is again easy, what regards to the second part, the exact

value of ¢, is %, [here d(x,G) = -1(x,G) and — as noted after (21) — the

1 .
exact value of ¢, seems to be also > Now, in order to prove that the algo-

)
rithm I has an error of optimal order, {—L],

2

]” (1+0(-9)

0=0 the following inequality should hold (generalization of Lemma 2, i.e. of
the subadditive property of N,), (modulo of course some logarithmic factor)

12-7(G)- D (x, G)

&

No(s,x,(}):=kp[

P
D,(x,G):= (P (G) D (x, G)) *
2P 2P
(29) > D,(x,G)=D,(x,G): it G=y G
j=1 j=1
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for regular subdivisions, and all x. Now (29) requires nothing else as the norm
inequality, (¢; = D¥?(x, G))), llallz,,, =llall,, which is not true when p=3. By

Holder’-s inequality D, (x,G;)= ||Ax||,’f/p2/2(g), and the latterfunctional, 47%(x, G),

is obviously additive in G. The conjecture that the main part of N, is k,x
e~P2 AP2(x, G), specially that Ax€L,,(G) is needed, is seen from Hadamard’-s

inequality A#2x(f)=1, Ydet D,x (f) and from the fact that the Green func-

p—2
tion for the Laplace operator - having the singularity [—“—l—lJ ,p=2 -
-8
is only in L p_, the dual of L ,+4; 6,2-0.
25
Let us see whether there exists an other upper bound — see (27) —
for the functional giving the main part of the individually best approxi-

mations, (12),

p

(30) A,(x,G):= [ [ VdetD,(x, 0 ]_2_
G

which is expressible in terms of (the values and) the gradients of x, at the
boundary of G. If these values are fixed along the boundaries of the intervals
belonging to subdivision, then the behaviour of the function, i.e. its values
become independent for the different subintervals, thus subdivision means
decomposition, in a well defined sense. If one applies the Cauchy-Schwarz
inequality to the integral (30), then one obtains that

1
(€2)) A, (x,G)=H,(x, G):= (volgrad x(G)-vol G)°*
where vol is for the Lebesque measure and grad x(G) is the image of the set
G in the “monoton” map t—grad x (f). Notice that H,(x, (g, b)) = (x’ (b)—
—x'(a)) (b—a) = D, (x, G). Because of the monotonity of grad x:
oP
grad x(G) = y grad x(G;), vol(gradx(G,)Ngradx(G)) =0, j=i,
i=1
H,(x, G) satisfies the required subadditive property

2P
(32) 2 Hp2(x,G))= H82(x, G),

Jj=1
because of [ja|lz,=<|lalz,, for g = %, acR?.

Thus in order to prove

?

P
(33) N, x, G)=k, [ﬂgﬂ] :

for some constant k, for an algorithm using subdivisions for a measurement
pattern in which at each step over an interval, G, we get and use an infor-

8%
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mation, I, concerning the values of x over G, I (x, G,) = ¢,, about x, and ac-
cepting (or subdividing) it, depending on the value of some “barrier’” func-
tional 47(x, G,)=e, (or not) it would be enough to prove an inequality (the
analogon of Lemma 1)

(34) dy(x, Gy) = dfz|1(2,G,) = 1(x,G,), 26K% =
=q,,(x, G)=r, H, (x, G,)

where d stands for the diameter of a set in .. (G,), q,, r,, are constants.
— Indeed for p = | in this way, using at each steps three points

(35) Al = 4, (x, a, b) = 2d (x, (a, b)) = x(a)+x(b) — 2x[a+b],

one obtains (33) with k, = 5 in the inductive proof, (for arbitrary p),
, . H, (x, G) \** ,

Ny(-), is chosen in the form N,(s, x, G) = -»-—T—~ —~v| with

+
appropriate positive constants u, v, the constant v is needed (used) in order
to compensate for the number of measurements needed in a subdivision
and not included into the left side of (32), see (24).

— In the case p = 2, the inequality (34) is not true, i.e. cannot be sat-
isfied for the information pattern used in Algorithm 1.

I't seems true that the only information pattern, I for which (34) holds
is the complete one, /€, i.e. when — at step n — we measure all the values
x (t) and subgradient grad x (¢) along the boundary of some interval G, then
of course, (as e.g. in the case p =1), we could choose 47 to be dlor H,
as well.

Any discretized version of the latter algorithm, i.e. one in which the
subgradients are approximated by finite differences seems — except the
case p =1 — to be far from being optimal order with respect to the number
of function evaluations, this will be partly explained below when we speak
about the instabilities.

In the case p =2, when the information, I™, used at step n consists
of the values of x along the boundary of G,, and along its two middle lines,
4% taken as di, (34) is not satisfied, for any r,, yet the role of the func-
tional H, can be taken by

(36) Fy(x, G):= (I (x, G)- 1, (x, G))'"
where I;, I, are the integrals defined earlier in (16), (17). Concerning this

functional, F,, let us prove that in the case of the complete mformatlon pat;
tern, I€, the inequality (34) with H, replaced by F, holds, with d’ = A’
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and r, = 2. Indeed for arbitrary x, 2, with I€(x) = I€(2), (x, 26 C*(G))

[x(@)-2()] =2 sup ff I aa;z(')(tgz ldl=

2
_’)5upf/ ]/gsj asg dt=2F, (x, G),

by the convexity of 2, and then the Cauchy-Schwarz inequality yields the
last part by the definition of F,.

If not the values of the gradients (along the boundary) but instead the
values of x along the two middle lines are computed (used), then for the cor-
responding algorithm as in the proof of Theorem | (using the subadditivity
of F,) one can prove that

(37 NI™ (x, &, Gy=| w, F200) 1og Mo ((’)g"] .
€ +

&

Even this algorithm cannot be discretized (to give an optimal order
one), because of the following instability. If the values of x are known — along
the middle lines and the boundary of x — only within some accuracy ¢,
[e.g. this results if for their approximation the one dimensional algorithm (35)
is used], then the perturbation of the value of @™ is not bounded by a quan-
tity proportional to &,.

— Our Algorithm 1 is stable with respect to errors in the measurement
of x(t;)) = ¢;, more precisely: suppose that the values ¢, i=1,..., N are
measured within accuracy ¢,, then using, as in Algorithm 1, five such values,
over the current interval, G, the value of the uncertainty in x(f) over G,
d(x, G, &), can be computed easily. Let us subdivide G whether (for a pre-
given &)

d(x, 4, ey)=e+4e, .

For this algorithm, the number of steps N (g, x, G) is estimated by the
same expression as when ¢, = 0, thus in the case of measurement errors of
magnitude M~1, to obtain over G, a global accuracy 5M~! (choose ¢ = ¢, =
= M~1) no more than k(g,, K°) M log M steps are needed, by (19).
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