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1. Introduction

Problems connected with gambling have been constant sources of in-
spiration to the development of probability theory from the very beginning.
The well-known monograph [2] of Dubins and Savage on inequalities for
stochastic processes takes its origin from such problems too, and several
authors besides them deal and have dealt with similar topics. Most papers
are devoted to fair or unfavourable games, while the study of favourable
games was disregarded a good while. In this topic we refer to the works
Breiman [1] and Méri and Székely [3].

Let us introduce some basic notions. A sfochastic game is a game of chan-
ce in which the gambler’s gain is a random multiple of his stake, i.e. the ratio
of the gain to the stake is a random variable not less than — 1. This random
variable describes the game, its positive values mean winning in the strict
sense of the word and its negative values mean loss. The gambler may
participate in several games at the same time. Thus the sequence of successi-
ve rounds can be modelled by a sequence of d-dimensional random vectors

XXy oo X,=(XD,X®, .., X@), X©=_1|.

(By vector a column vector is meant, the corresponding transpose is denoted
by dash.)

Denote by T, the fortune of the gambler after n rounds. Let the initial
fortune T, be equal to 1. In every round the gambler may decide about the
proportion of his fortune to be staked and about the ratio of the betting
amounts in various games. To do this he can make use of earlier observations.
Thus the sequence of random vectors

a, 0y, ..., a,= (@Y a?®, ..., adD),

is called a strategy if
(i) a, is measurable with respect to the o-field 7, _, generated by X;, X,,. ..

ey n—1»

T*
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(if) a, is an element of the simplex

i=1

d
A= {aeRd: av=0, >ah= 1}.
With the notations just introduced we have
T,=] (1+a;X)).
j=1

The gambler’s aim is to increase his fortune to the highest degree. What
is meant by it? If no game is favourable in a round i.e. all the components
are of non-positive expectation, then the expected gain is maximized by not
gambling at all. If there are favourable ones among the games, then we
ought to stake all of our money in the most favourable game (in the game
of the highest expectation). In this case

E(T ol Fnr) = Tos(1 +max{0, EXL [ Fos), - - ) EXOIFn- 1)) -

This strategy maximizes the expected gain in every round, but at the same
time it can bring to ruin: T, —~0 a.e.

It was observed even by D. Bernoulli that the optimal strategy should
maximize a logarithmic type expectation. In case of independent, identically
distributed rounds the constant strategy a, =a* provides the highest rate of
growth for the total fortune, where @* is the maximum point of

E[log(l +a’ X,)— log( 1+ i ( +X§i’)]]

in the simplex 4. [The negative term does not play any role but enables to
avoid restrictions on the finiteness of E(log(1+X{")).] The optimality of
this strategy was given a precise mathematical meaning in [1] and [3]. The
latter work contains also a characterization for “nearly optimal” strategies.

The aim of the present note is to extend the results of [3] to the case
when neither independence nor identical distribution are supposed for the
successive rounds. This generalization does have a practical value, since the
i.i.d. theory is not applicable to the phenomena of everyday life that can
be described in terms of favourable games (Stock Exchange, etc.).

2. Results

Since the rounds are not independent, the previous outcomes can provi-
de informations on the result of the forthcoming round. Hence the optimal
strategy is in a real connection with the past, it can’t be expected to be con-
stant.

Analogously with the i.i.d. case we give the following definition: let
a = a¥X,, X, ..., X,_,) maximize the function

d
Fa@, Xy, oy X ) = E[log(l +ar X,)~log[ 1+ 3 (1+ XﬁP))! CF]
= |



ON FAVOURABLE STOCHASTIC GAMES 101

in the simplex . (Use the regular variant of conditional distribution for
the expectation.) The uniqueness of a¥ follows from Lemma 2 of [3] provided

the conditional linear independence of the coordinates of the random vec-
tor X,.

Denote by T} the fortune obtained by the strategy {a¥}. Now let {a,}
be an arbitrary strategy, we will examine the asymptotic behaviour of the
ratio T,,/T#*. The optimality of the strategy {a¥} is indicated by the following

THEOREM 1.

lim T,/TF = T exists and it is finite with probability one, further
N oo .
E(M=1. x|

A strategy {u,} is called quasioptimal on the event A if T(w)=0 for
almost every m¢ A. We aim at finding conditions that provide the quasi-
optimality of {a,}. A “good” strategy must not risk going to ruin, hence we
can suppose

Pa, X,=-1)=1.

This requirement is quite natural and it is et if
d
> A (P = -1 Fu)=0) =<1,
i=1

(Here and in the sequel I(.) denotes the indicator of the event in the brackets.)
For ze 4, neN let us define a stochastic function W, (z) = W (2, w) by

. (a -2y X,| - ]}
W, (2) = mindl, E| —2—"-2.F, _ |t
@) = minf1, B[ 05 7
As it turns out from the proof of Theorem 1, W (2)=0 with probability I.

THEOREM 2.
The strategy {a,} is quasioptimal on the event { W ,(a,)< «}. [X]

We remark that in case of independent rounds a,, is constant with pro-
bability 1 and W ,(2) is also a deterministic function. In [3] it is proved that
in the i.i.d. situation the condition >’W(a,)< =~ is necessary and sufficient

for the strategy {a,} to be quasioptimal. The proof given there is not appli-
cable to the general case and concerning the necessarity — although it seems
to be valid — we have partial results only.

3. Proofs

PROOF OF THEOREM 1. The proof below is a straight adaptation
of the method given in [1] and refined in [3]. We repeat it merely for the
sake of completeness.



102 MORI, T. F.

Denote

d

g1+ % 1 x1).
i=1

For O0=f=1 we have '

E (1og (142" X,)= Uy 1) = E(log (14 (ta, + (1 ~1) a5 X,)~ Up|Fr_s)

by the definition of a¥*. For the expression on the right-hand side the follo-
wing lower bound can be obtained:

log(1—t)+ E(log(1+a¥ X,)— U, | Fp-y) -
From these inequalities it follows that
L+a, X, i
l+a¥ X, )

The expression behind the sign of expectation is a decreasing function of {,
hence the conditional version of the monotone convergence theorem implies

1+aXf ]

0;5[% log(l —t+t

. 1]——log<1—t>

OzE[
l+a¥ X [

as 140. Using this we arrive at
E[ T %-1] ~ Loy E[ L+ Xn |2 1]< LS
Tn Tn—l 1+arT n Tn 1
Thus, being a non-negative supermartingale, T,/T* converges with proba-
bility one. Applying the Fatou lemma to the limit 7 we get
E(Ty=lim ET,|TH=T,/T§ = 1. [¥|

N+ oo

PROOF OF THEOREM 2. First we remark that

(a¥—a,) X, | ] [1+a*’X ]
E|Xr 0l An by | = E| - =
[ 1+d, X, ot 1+d,X, Fn-s
z[]/E[-M (;,1_1]]—1;0

I+ay X,

by the conditional Jensen inequality and by (1), thus W (a,)=0.
As a starting point for our proof we use the identity

_Tizﬁ[‘“_?"xf]zﬁ[l Mﬁ]
T, =1 1+a}Xj i=t 1+a;Xj )
Taking the logarithm of both sides we obtain

* a* —aVY X
@ mn<2( 2 X

=1 1+a X
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T =0 means lim log (T,*/T,)< =, hence it suffices to show that if 3’ W, (¢,)<

N o n
< o then the sum on the right-hand side of (2) does not tend to + eo.
Let us introduce the strategy

Zln = u:+(an—a:f) 1(w;1 (an)< l) -
Then

(3) E [(az< B dn)' Xn
1+, X,

On the event 3'W, (a,)< - clearly @, = u, holds for sufficiently large values
of n. Therefore it suffices to show that the sum

Z ‘(a:—an), Xn
n l+a, X,

?] = 1 (W, (a)=<1) W, (a,) = W, (@)

converges on the event where > W, (a,) does so. Consider the martingale
&, (@;—a¥y X;

7o j (n
z, = ,Zn o +W, (@) .
Its differences are bounded from above:
Cltay X

Z—Zy =1 W (a)=2.

T+a, X,

In virtue of [4, Theorem V. 6.3} Z, converges a.e. on the event {limsup Z, <
< oo }. Finally, combining (2) with Theorem 1 we obtain

& (a;—a}y X;

limsup 2,

— <+°°,
n-= j=1 1+ajX;

hence > W, (a,)< o implies limsup Z,< + -, from which the assertion to

n
be proved immediately follows.
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