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In the present work the iterative way of solving operator equations is
studied. For this purpose an extension of the wellknown classical secant
method resp. of the method of chords are given. We shall consider a class
of nonlinear operators in the conditions of linear semiordered space, namely
in Kantorovi¢’s sense, i.e. K-spaces, where the axiom V. is satisfied only
for denumerable upper bounded subsets of the space [6; p. 21].

It can be mentioned here that we shall not suppose the existence of
certain derivatives or some assumptions for uniform derivability for the
above operators [1]. It is known that the problem of effective calculation
resp. the assurance of the existence of these derivatives represent generally
one of the greatest difficulties connected with numerical applications.

Giving a suitable generalization of the secant method for the above class
of operator equations, we can establish more general conditions for the ex-
istence and uniqueness of solutions, giving also assumptions for convergence
of this method. In this way we can obtain at the same time some estimations
concerning the errors of the approximate solutions.

Let us now introduce a notion of the divided difference for the case of
nonlinear operators defined in any linear space, particularly valid of course
also for K-spaces.

Definition 1. Consider the operator P(x) defined in a certain linear space
X and range in Y of the same type. We are going to construct the operator
Py «~ defined in the Cartesian product X X X. For this purpose we assume that
the following conditions are fulfilled:

A) Let Py - be a linear (i.e. addivtive and homogeneous) operator for
fixed pair (x’, x””)€ X X X, so that

Pyx€[X-~Y],

where [X - Y] represents the space of all linear operators with domain in
X and range in Y;
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B) Let the equality
(Ev) Py (X' =X") = P(X') = P(x)

be satisfied then we say that P, .~ is a divided difference of first order for
the operator P concerning the knots x” and x” [2, 3]. [X]

We mention here that our definition for the divided difference is given
for any linear space (not only for normed space); thus this doesn’t require
any conditions of boundedness in norm.

The divided difference of second order Py »x» may be intorduced in
a similar way [2—5].

Definition 2. Let Py x»x» be a bilinear operator for fixed knots x’, x”,
x’"" defined in the Cartesian product X X X X X, where (x’,x”,x”")e X X X X X,
where Py satisfies

(Ex) Py X’ =X"") = Py o= Py . [5]

The operator Py x»x» (1, v) is considered bilinear concerning its argu-
ments u, v (in the case of fixed knots x’, x”/, x”’), i.e. it is additive

P s Uy + 1y, V) = P o xon(iy, V) + P x xor(Ug, V)
Pr s o1ty vy +V9) = P gr xon(11, V1) + Pr o x(U, V)
and homogeneous
Py gn(ctt, V) = Py xr (U, V) ,
Py xr U1, €V) = cPyr xr x (U, V)
for any u, uy, u,, v, v;, v,€ X and for any real number c. |x]

Definition 3. A linear operator L defined in a linear semiordered space
X with range in Y of the same type is considered positive, if from x>, it

follows Lx>é~), where O is the null-element of X and @ is the null-element
in Y. In this case we denote L =0, and 0, represents the null-linear operator
defined on X. [x]

Definition 4. Let L, and L, be linear operators defined in X with values
in Y. Wesay L,<L,, if L; x<L, x holds for any x¢ X. |x]

Definition 5. A bilinear operator B defined in X X X with values in Y
is positive, if u=0, v>0 implie B(u, v)>©, where (1,v)€ X X X and O is the
null-element of Y. In this case we denote B=0,, 0, being the null-bilinear
operator in X X X. [X]

Definition 6. Let X and Y be K-spaces and let x,, X, be certain given
elements in X. The set of elements x satisfying the inequalities

Xo=X=X,

is called order-segment [x,, X,] in X. [x]
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Consider now the operator equation
(D P(x) = 6,
where P(x) is a nonlinear operator defined on [x,, X,]< X with values in Y.

Definition 7. The operator P(x) is called (0)-continuous on [x,, X,] if
the following equality [6]

(0)~lim P(x,) = P((0)~ lim x,)

is fulfiled for all monotone and convergent sequences on [x,, X,], where
(0)-lim x, denotes the limit of sequence {x,}, defined in the conditions of

N oo

K-spaces. [x]

THEOREM 1. Let X, Y be K-spaces. We consider the nonlinear operator
P(x) defined only on the order-segment [x,, X,]< X with values in Y. Let
us assume that the following conditions are fulfilled

1°. P(xo)=0=P(X,),
for the initial approximate solutions x,, x,, where x,=X, and x,, X, € X;

2°. P(xy is (0)-continuous and its first divided difference satisfies the
inequality
Px/xusr

for every x’, x""€[x,, X,], where I" is a suitably chosen linear (i.e. additive
and homogeneous) operator defined on [x,, X,], having positive inverse
r-1=0,;

3°. the sequences of the lower approximate solutions {x,} respectively
the upper approximate solutions {x,,} are constructed by the following itera-
tive processes

(2) Xn = En—l_lv~1 P(j_cn—l)’
2) X, =%, ~I1P(x,)), (n=12 ...).

Then the operator equation (1) possesses at least one solution x*, which
belongs to [x,, X, ], and the monotone increasing sequence {x,} resp. the mono-
tone decreasing sequence {x,} converge to x*, resp. to x*; thus

(3) x*: = (0)-lim x,=x*<(0)—limx, = : x*
and T T

4) Xpo1sSX,=x*=x*=X*=Xx =X, _,,
“@) P(x,)=0=P(x,), (n=0,1,2,...),

where x* is the smallest and x* the greatest solution of the equation (1) in
the order-segment [x,, X,].

5 ANNALES Sectio Computatorica — Tomus I11.
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PROOF. First of all we observe that the inequalities x,<x, and x,; <X,
result directly from (2) resp. (2) and from the positivity of I'-1. In the next
we follow partially Baluev’s way [1]. Really, as a consequence of 2°. we ob-
tain the inequalities used by Baluev, i.e.

©) P(xo)+ I'(x —Xo) = P(x)= P(xo) + I'(x — x,)

for all x€ [xq, Xo]-
To verify the inequality x,=<x, we shall show before x, <X,. We have
indeed

Xo=X1 = Xo=Xo + I P(xe) = I' [ '(Xo—Xo) + P(xo) =0,

which follows from (5). Since x,=x,=X,, i.e. X,€[X,, X,]. Thus we can apply
the relation (5) also for x=x,, and from the right side of (5) we get P(x;)=0;
indeed we have

P(x)=P(xo)+1'(x;—Xo) = 0.

Now we can verify directly the inequality x,=X,; really from the left side
of (5) we get

%X, = %= PER)—x, = — -\ [P(Ro) + I'(x,~ %)= — '~ 'P(x,)= 0.
Applying once more the inequalities (5) for x = X;, we obtain
P(x))=PX,)+I'(x;—Xy) = P(xg)—1"I'""* P(X,) = O .
In this way we have establised for n = 1 the following inequalities
Xo=X,=X;=Xo,
respectively
P(x)= =P().

By complete induction, the above inequalities may be extended for
all natural n, i.e.

'Xn—IS'SnSEnS)_Cn—l ’
respectively
P(x,)=0=P(x,).

Thus, if the sequence {x,} is monotone increasing and upper bounded,
then there exists the limit x*, i.e.

n-—co

x*: = (0)—lim x, = sup x,.
n
Similarly, we obtain for the decreasing and lower bounded sequence {x,}
the limit

x*: = (0)-limXx, = inf x,.
N< oo n
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Based on the (0)-continuity of P(x), we get
P(x*) =6, PkE*) =0

where x*, x* are the smallest respectively the greatest solution of P(x) =
in the order-segment [xo, Xo]. In this way our theorem is completely proved. ]l(

REMARKS. 1. We mention here that we can assure also the uniqueness
of the solution as well; namely in the case, when there exists a linear ope-
rator A from [x,, X,]CZ X to Y, having positive inverse A%, such that

(6) A=Py

for all X', X" €[x,, X,]- Really, starting from the inequality (3), i.e. x*=<Xx*
and (6), we obtain

A(F* — x*¥) = Pze go(X* —x*) = P(¥*) — P(x*) = O

Based on the positivity of the inverse A-! results x*=x*, and comparing
with (3), we obtain x* = x*.

2. The divided difference can be applied usefully for the effective construc-
tion of the operator I". Indeed, in the next we shall construct the generalized
secant method, resp. the method of chords for the iterative solving of ope-
rator equations, replacing in (2), (2’) certain suitably chosen divided diffe-
rences instead of the linear operator I'. In this way we can state the following
theorem.

THEOREM 2. Consider the nonlinear operator P(x), where x¢[x,, X,]<
c X and P(x)c Y. Let us suppose the conditions

1°. for the initial approximate solutions x,, X, and x_, the following
inequalities

P(Xo)<0<P(§o)<p(f-1)
are fulfiled, where
Xo<Xg<X_y, Xg Xo» X_1€X;

20, there exists a symmetrical divided difference of first resp. of
second order, i.e.

Py tespectively Py gy

244 144

for all x’, x”’, x"” € [xq, Xo], Where X’ =x", X" =x"", X' #x

(0)-continuous and (0)-convex in the sense

, moreover P(x) is

P x’ x"” x”f>02y
0, being the null-bilinear operator;
3°. there exists the inverse Pz~ for any x’, x” €[x,, X,] and Pz :=0;;

&6*
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4°. the lower and the upper approximate solutions are calculated using
the formulas

(7) Xﬂ an 1° n 1P(3£n-1)’
(7) Ty =T — P2z P(Ro), (1=1,2,..)

then there exists a single solution x* for the equation P(x) = @ in the order-
segment [x,, X,], i.e. x* : = x* = Xx*, where

x*: = (0)-limx,; X*:=(0)-limX,

noew= N o

and

X

2n—-1

P(x,)<0<P(x,). ]

<§n<X*<§n<3—cn—l

PROOF. In order to prove this theorem we require certain inequalities, as
(8) Pxnv.<Px'x"<P>_co§1

for any x” and x”, where x,<Xx, <X <Xx""<X,<X_;. For this purpose we can
verify easily, step by step, the inequalities

P)_(O ’_‘-1<P’_C_D x'<P§l x’ <P§l X <erxu

based of course on the (0)-convexity of P and on the symmetry of the divided
differences of first order. In this way we have

P5051<PX'X”'
Similarly we can also establish
Py xn <Pz 3,
using the inequalities
Px'x"<Px'§_1 <P§0§_1 .

Moreover we need for the next the following inequality, which results also
directly from the (0)-convexity of P:

(8) P&%., <P,

as well. Really, considering that if we have two linear positive operators
L,>0, and L,>0,, then the result is L,L,>0,. Thus we obtain the inequality
(8’) in the following way: we observe that

-1 -1
Pfof-l ’ Pfof-l_Pfo?So and an Xo
are positive operators and as a consequence we get

-1 -1 - -1
01<P?o'f—l [Pfof-l_Pioio]P?oXo= Xoxo PXoX e
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Now based on the positivity of the inverses P}—(,I;_l respectively P;‘o',_:"
we obtain directly from (7°), (7) the inequalities x; <X, resp. x,<x,. We can
also verify x, <Xx,. Really, using the inequality (8") and the property (E;) we
obtain

Xy =1 = X~ Xo + P xo P(X0) — Pry 2., P(%o) =
=Xy = X0+ Pgy xo P(%0) Py xo P(%0) =
= P3s [P5o %o — o) + P(Xo) — P(Fo)] = O

From the above inequalities we get x, <X, <X, <X,. i.e. Xy, X, € [Xgy X ]-

Now we are going to establish the inequalities P(x,)>© and P(x,)<®
For this purpose we start from the relations

Piofl_Pfof-l = Ik fli—l(il_g—l)
respectively
P(xo) = P(X1) — Pxyx_(Xo —X1) = Pryzix.(X1 —X_1) (X — %) <O

Using (7’) for n = 0 and the convexity of P and the inequalities x; <X, <Xx_
we get P(x,)=0.
Similarly we can obtain P(x,)< 0. Indeed, considering

Py, xo—=Psyx, = Px, % l‘o()_(l —Xo)
respectively
P(xy) — P(x0) — Pz xo(X1 — Xo) = Px, 530 (X1 = X)(X1 —X0) < 0.
In this way we have P(x,) <0< P(x,).
By complete induction we obtain
:Sn-—l = En = fn = in—i
respectively
P(x,)<0<P(x,).

Thus the sequences {x,} resp. {x,,} being monotone increasing and upper
bounded resp. monotone decreasing and lower bounded, there exist the li-
mits

x*: = (0)-limx,, x*:=(0)-limXx,

N> oo N— co

and based on the continuity, we have
P(x*) = P(x*) = 0,

x* resp. x* being the smallest resp. the greatest solution of P(x) = @ in the
order-segment [x,, X,]-

For the uniqueness of the solution we can choose a linear operator A
with positive inverse from Theorem 1., such that A<P,, for any u, v€[x,, X,]-
Indeed, keeping in mind the inequalitites (8) we can choose A: = Py ,
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Using the same reasoning as at the end of the proof for the first theorem,
we get the uniqueness of the solution. So our theorem is completely proved. |x!

REMARS. 1. Comparing the method given in (2) resp. (2") from Theorem
I. we can mention that the operator /" is replaced in (7) resp. (7) by Px, «,

resp. Py z,_, and of course I" does not depend on n. However these divided
differences can be fixed at a certain n. In this way the operator I" from the
first theorem can be constructed for example I': = Pg 5 .

2. We observe that instead of Py, , x, , in (7) can use Py z,. Of cour-
se in this case it is necessary to calculate before X,, by (7”) and then use

’

-1
Xn = {n—l—Pzn_lfnP(_x_n-l)r

which gives better approximations. This fact can be verified directly.
3. In a similar manner we can study the case when we have

-1
PX' X x" <02 and le x> 01 .

4. In this way certain results in [5] were generalized, without supposing
conditions concerning the derivability respectively uniformly derivability
for the operator P.

Let us indicate at last some illustrative examples for the established
theorems.

We consider first the following class of functional equations

9 Fit;x(t) =g,

F being a given measurable bounded real function of arguments ¢ resp. of
x; the unknown function x(f) resp. the given function g(f) belong to a given
order-segment of X, where X represents the K-space of measurable bounded
real functions defined on a finite closed interval [a, b]. In this case of course
the axiom V. of the K-space is satisfied also for denumerable upper bounded
subsets.

Let us assume that the following conditions are satisfied:

1°. F(t; xo(t)) <g(t)< F(t; X(t))
and

Xo(H)<Xxo(t), for Vvi€]a, b],

where x,(f), X,(f) € X represent some initial approximate solutions;

2°. let F(t, x(t)) be defined on the order-interval [x,(f), Xo(f)]<X and
range in X. We consider the first resp. second order of divided differences
for F in usual manner:

Fo ;PG EO) = F( 1)
() —n()
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respectively
. Fey—Fe:
Feg: = —2—%
n—s

for all E<n<¢, where & 5, J€[x(f), Xo(t)]. Let F be (0)-continuous with
respect to x and moreover (0)-convex in the sense

Férit =0,
forall t<n<, and &, 9, J€[x,(1), X,(D)];
3°. O<Fzz,_, <+ <,

where x_,(f) denotes a chosen initial approximate solution and x_, >X,;

4°. the lower resp. the upper approximate solutions are defined by
formulas

1 .
o [P xa-1(0) —2(0)]

Xn_1Xn_1

En(t) = En—l(t) -
respectively

- — 1 —

Xo(t) = Xy o) ———— [F(t;xn—l(t)) -g®], (=12 ...).
Xn_1%p_z

In this large conditions we can assure the existende and the uniqueness

of the solution x*(f) for the equation (9) on the order-segment [x(f), x(f)],
having the inequalities

)_Cn-—l(t) = Xn(t) = X*(t) = in(t) = K‘n-—l(t)
and
F(t; xa(t)) <g(t)< F(t; Xa(0)) -

Indeed, we can apply directly Theorem 2. for this case. Of course we

can use Theorem 1. as well — choosing the operator I" in a convenient man-
ner.

Similar conditions can be imposed for the following class of nonlinear
integral equations:

b
F(t; x(t);fK(t, s; x(8)) ds) =0,
where F resp. K are measurable functions.
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