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1. Preliminaries. In the papers [I, 2, 3] the general definition of an
incompletely specified (or partial) finite automaton was proposed and some
special classes of such automata were introduced. In this paper the follo-

wing problems are solved. Let Agen be a partial finite i-automaton _[l].

At first itis necessary to answer if there is any probabilitic automaton in Age,.
Secondly it is necessary to specify in correct form a partial finite pi-automa-

ton which is contained in Agen. A special case of this problems was investiga-

ted in [2, 3].

2. Definitions. First of all we recall some definitions of the paper [I].

Hereafter we use the term automaton to mean a finite automaton.
Let us use the following notations (where «, 8€{0, 1}):

]
_[Cifa=0 | _[)ifg=0
[ifazl" litp=1.
We also use the notations
Q ::(—oo,oo),
R =A{rlr =(ryro .. 1), ri€R, =12, ...,n},

R =R|IR = (riJmnr» ry€®R, i=1,...,m, j=1,...,n}

for the sets of real numbers, vectors and matrices respectively, and the no-

tations
@n = rIrEKQ“, l'i€[0,1], i=1,2,...,11, Zr,:ll

! f’
|

P = [RIR€R™ ", 1 €[0,1], jz’rij:l,izl,z,...,m,j=|,2,..._.r1}
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for the sets of all probabilistic (or stochastic) n-dimensional vectors and
mxn-matrices, respectively.

A partial vector with interval elements (an i-vector) is a subset of @"
defined as

F= {[rEan, riéff, i=1,2, .”,n}’
where
i
fi=le,di| #0, o,9,€{0,1}, ¢;d;€R,
o;y; = 0=¢;<d;, 0,9, = 1=¢;=d;.
An i-vector is specified in the form
k4

. V2 n
(1) r= |C1!d1|’ lczydzl""!lcmdnll'
o2 on

o1

Accordingly, an i-matrix is a subset of R™ » defined as

={R|R€ER™", ry€fy, i=12,....m j=12,...,n},

where

] j
ri]= !Clj’dijl ;ﬁg, Uij,y,-jE{O, 1}, l]’dUGQ

0;j vy = 0=>¢y<dy;, o5y = l="'ij5dij-

An i-matrix is specified in the form

~ ij
R=llcijrd1j‘] .
Sij m,n

{“6’ : [; 51)

Let X = {X, Xy, ..., X}, Y ={Y, Y, ..., Y}, A={A,, 4,, ..., A}
be the alphabets of inputs, outputs and states, respectively. Then a partial
generalized i-automaton (briefly, an i-automaton) is a system

(2) Agen = <X; A’ y; f(O), ﬁ) ’
where

For example,

™
I

va Ym
r(O)—[icld1|, |C2,d [y eeey |cm’dm|]

4 m
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is an initial i-vector and

7si, lj

7?:[ | Csiytjy dsiyj | ]
nm, km

¢ 9si, ij

is a transition — output i-matrix.
An i-automaton (2) defines a set of completely specified generalized
automata such that

Agen € A(genor(o) Ef(o)& Re ﬁ
where Agen = (X, A, Y, rO, R).

A partial probabilistic vector with interval elements (a pi-vector ) is a subset
of P defined as

ﬁz{rlre@", ri€f;, i=1.2,...,n, Z’rizl}
i

where
8

f,-=|ai,bi|g[0,1], I:,-7fﬂ fOl' i=l.2....,ll.

A pi-vector is specified in the form

N i B2 bn
(3) p=[|a1!b1|' Iaz’bzl!"'rlambn]]
*n

*1 ®

where the obvious condition 3 r; = I is omitted.

bj
We say that a pi-vector is correctly specified if for each r;€ | a;, b; | there

n
B n

i
are r,€ (a;,b,| i=jsuch that > r, = 1.
s=1

A subset of (D™ 7 defined as
p:{p|p€r R r€F Zj’r,.j =1, i=1,....m j=1, n}

where
Bij
Fip= lapb; | €10,1]1, Fy=0, i=1,...,m j=1,....n
Gl]
is cailed a pi-matrix and is specified in the form where the obvious conditions
2 r; = 1 are omitted. A pi-matrix is correctly specified if each of its rows

ié a correctly specified pi-vector.
For example,
[0,3; 0,6) (0,15 0,2] (0;3; 0,5]
P =( [0,5; 0,6] 0,2 [0,2; 0,3] )
[0,2; 0,4] [0; 0,3) (0,3; 0,8]

is a correctly specified square pi-matrix of order 3.
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A partial pi-automaton (briefly, pi-automaton ) is a system
(4) ‘Zpr = <X’ A, Y“L';(O),f)>

where 7 is a correctly specified m-dimensional pi-vector (a partial initial
probabilistic distribution on the state set A) and p is a correctly specified
pi-matrix of size nmxkm (a partial transition-output probability matrix).
A partial pi-automaton (4) defines a set of completely specified probabilistic
automata such that

A, = (X, A, y,ﬁ(o)py>€ Ap,ﬁp(")é,ﬁ(") & PcP.

3. The problem, Now let us formulate the main problem of this paper.
Let .den be an i-automaton (2). At first it is necessary to answer the question
if there is any probabilistic automaton in the set ,den or not. And then it is
necessary to find a correctly specified pi-automaton /Nlp, such that ﬁp,g .Afgen

and no probabilistic automaton belongs to the set Age,\A . It is clear that
for the solution of this problem it is sufficient to solve an analogous problem
for an i-vector and a pi-vector.

4. The conditions of correct specification. In the paper [1] the follo-
wing theorem was proved.

Theorem 1. Lef p be a pi-vector (3). Then p is correctly specified if and
only if the following conditions hold forj =1, ..., n:

i#j
and a
(6) 4= 1-3b&3,:i#], f =0=n =0; [
i
™ b=1-3a, |
i
and Ib
izf

This theorem makes it possible to answer the question whether a pi-
vector p is correctly specified or not.

5. The solution. The following two theorems give the solution ot the
problems formulated above.

Theorem 2. Lef 7 be an i-vector (1).
Let ¢}, o] be defined as

o = [ if ¢,=0 o g, if ¢,=0
1o if ¢=<0 1 if ¢,<0.
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Then NP8 if and only if the following conditions hold :
@) 2a=1 and ¢ =I1=2&o =1
i i i

(b") d=0; i=1...,m; 2di=1 and 2Jd;=1=&y, =1.]
i 7 1

Proof. For the proof of necessity let p = (p,, ps, . . ., P,) be a probabilis-
tic vector (peDn) such that per. Then p,€]0, 1}, > p; = | and for every {
1
¥i Vi
pi€lci,d; 1S ¢ d; |-
41 %
This implies that

Yi
[0, 11N¢ d;| %0, i=1,...,n,
9

9) )
Zpi = IEICEyZdiI ’

where ¢ = &0}, y = & y,. The necessity of conditions (a’) and (b”) obviously
follows from (9).

Conversely, assume that conditions (a’) and (b”) hold for 7. We prove the
existence of a probabilistic vector p such that pe7NP". From (a’) and (b")
we have thatif d;=c/fori=1,...,n then Jd, = > ¢, =1, &o{ =& y;=1.

~ 4 t i !
Thus if p,=d, for i =1,...,n then perN¢. If thereis an hsuch thatd, >¢;
then 3'(d;—c;)=0 and we take the following elements of the vector p

1-2¢;
10 =cl+—"(d, =), j=1,...,n.
(10) pj=¢; S-<) (dj—cp), J
i
From (a"), (b’) and (10) we have that
¥j vj .
pjel’c},d,-]glcj,djh j=L...m Zp=1,
o of

J
i.e. per and peDn. This completes the proof of Theorem 2. [x]

Theorem 3. Let 7 be an i-vector (1) such that conditions (') and (b’)
hold. Let ¥ be an i-vector defined as

&1 &2 &
(11) f,=[|U1,V1|,|U2,V2|,---,IUmVn| ’
S .2} [

where

& i
(12) Ju,,vi|=|ci,di|r1[0,l] i=1,...,n.
t i
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Then a pi-vector (3) is correctly speczfzed and p = rNP" if and only if the
Sfollowing conditions hold for j = 1,

(13) b; = mm(vj, 1— ZUI) ,
£
(14) ajzmax( %b)

(5]
(16) ;= 0e(q; = u)&(s; = O)V(aj = I—Z.bi)& Ji=j:6,=0. X
1]

Proof. Since conditions (a’) and (b’) hold for 7, thus FNDr=@. In accor-
dance with (11) and (12), 77 and 7/ NP"=rNP". Then conditions (a’) and
(b’) hold for 7 too, i.e.

=1 and Ju;=1=&4 =1,
Jv,=1 and v, =1=>&e — 1.
7 i i
Let p be defined as in (3) and (13) — (16) and p = (py, Poy - .., Py) e @

probabilistic vector (peD") such that per’. Then for the vector p Zp,_]
and

(17) piéél ul’ z‘ CIO 1]

ll
=

holds. This implies that
(18) pf:{Sbj Te=

and
[51—2”( if .&'6,. =1,
(19) el

i#=j

<I—Z'u it Ji:izj, §,=0.

l7‘j

Then in accordance with (18), (19), (13) and (15)
B;=0=p;<b, = min(vj, -2 u,-),

izj

(20)
B = 1=p;=b; _mm( 1,1—211)

i#f
From (17) we have also that

@1) p,-:{z”f it o, =1,
>u; if 4;=0
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and in accordance with (20)

|>I—Z’b if 3i:i#j,8,=0,

(22 , 14
) =g = lzl—zb,. if &8, =1.
= i=f

It follows from (21), (22) and (14), (16) that
«;=0=p;>aq; = max(uj, 1 —Zb,-),

=]
(23)
w;=l=p;=a; = max(uj, 1 —ié;b,-).
8
Then in accordance with (20),(23) p;¢ laj, j| J=1,...,n ie per'=pcp

and therefore for p the conditions (a") and (b’) hold.
Conversely, assume that pep, where pis defmed asin (3) and (13)— (16).

It follows from (13)—(16) that |a,,b [C |u1,v| fori=1,...,nand pcr.
Therefore for every pepn
per’<pep
p=rnpr=rnp".
Now it is necessary to prove that if a pi-vector p is defined as in (3) and
(13)—(16) then it is correctly specified, i.e. that for p conditions (a) and
(b) hold. From (14) and (16) we have that for p (5) and (6) hold. Therefore it

is necessary to prove only that for p (7) and (8) hold.
Assume that

and

(24) aj _ k[lljy j#_]'p]:‘z; . .'.,_‘]’In ‘
ll "gjbn F=Julo - Jes

and consider thecasej = j.; v =1, ..., k.
In accordance with (24)

Sa= X utk- I 3,

izj i, fy y= K jly
r=1, , K
and since
S b= 2 b+ 2 bitby,
i;éjk v=1, ..., k-1 l#l’.’v
r=1,
thus
(25) 1-Sa= 3 (& —u)+(k—-])(2b——l)
ij [E

r=1, . k
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If £ =0 then from (25), (13) we have I—Z’a 1—2 u;=b,. Since
b=a;=u;fori =1, ..., nand Z’b =1, thus for k>l we have 1- 23 a;=b,.

i=j

Therefore condition (7) holds fOI‘j =fnr=1 ...,k
Let j be now such that j = jg, S€{l, 2, k} then

i#fe L5 foy v, Lo k=1 0#f, r=6+1, ...,k i=],
r=1,...,k

and since

S b= 3 b+ 3 b+ 3 bi+by,

I;éje 1 v=1,...,£-2 v=E541,..., k l‘?fjp
v=1, ..., Kk
thus
(26) -2 uy= 2 (b,»»—u,-)+(k—2)(2 b,.—l)—l—bjg.
i fg i, i
v=1, ...,k
If k£ = 1 then in accordance with (26) and (13) we have
=2 = 2 (bi—t)+(Zbi=1) 40, = 1= Z u=b,.
e isfy 1 iy
Since b;=a;,=u,fori =1, ...,nand Zb =1 thus for k=2 we have | — Ju;=

1#]&

=bj,. Therefore condition (7) holds fOl‘j = je; £ =1, ..., kalso.
Now we prove that for p, condition (8) holds. Assume that

(27) by=1~-2a;, a;,=0, ij#]

i=j

and prove that in this case 8; = 0.
Firstly consider the case J#=jyv=1, ...,k Ik =0 then from (23)
and (27) we have b =1- 2 a=1-2 u,. If 8, = 0 then it is follows from

=] (]
(15) that §; = 0. Assume now that é; = l. Since a;, = O thus it follows
from (16) and (24) that a;, = u;, = l——Zb. and there must be an i such

i;éi
that i =i, and 8; = 0. But in this case b; = l S’u = 2 b,— 3 u;. This
£ l#j i
implies that b, = a, = u, for i = i, and since p#ﬂ thus there is no i such

thati = i,8,=0 and o;, = l. But this contradicts our assumption.
Therefore é;, = 0 and 8, = 0.
Ifh=1b;=1-23 a then from (25) we have

isf
(28) 2 )+ k=D (Ib-1) = 0.
istf, jy :

v=1, ...,k
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If k =1 then b, = u; = a; for i), j,. Therefore o, = g3, = 1, i #], j;, and
then iy = Jjp «j, = 0. In this casé from (27) we have a;, = 1— > b, Since
= |- 2 b;>u; thus in accordance with (16) i1
i)y

uj, =0 Jiti=j, and B, =0,

and if oj, = 0, /3, = landi#j, j then 8; = 0. For k>1 equation (28) is true
only if Zb = 1. Then g; = b; and o; = 5, = | for all i, i.e. there is no i,

such that ai; = 0. Thus we have proved that condition (8) holds for j s« j.;
r=1, ..., k.

Let now j = je, 5€{l, 2, ..., &k}, then for k = 1 it follows from (26) and
(27) thatb;, = 1 — 2 u,, and this case is analogous to the case j=j,; v = 1,

ki k=0 Wthh we have already investigated above.
If k=2,b;, = 1— 2 a; then from (26) we have

l#JE

(29) P (b,-—u,-)+(k—2)(20,-—1)=
[#]4 i
=1, ...,k

It k = 2 then b, = u; = a, for i#J,, j,. This case is analogous with the case

J=J. v=1 ..., k; k = | which have also been investigated above. And

at last for k=2, equation (29) is true only if 3 b,=1 and this case is analogous
i

with the case j=j,; v =1, ..., k; k=1. Thus we have proved that for p,
condition (8) also holds and therefore a pi-vector defined as in (3) and (13)—
(16) is correctly specified.

After all we notice that for any correctly specified pi-vector p’, such that
p’ = p the conditions of Theorem 3 do not hold as there is a vector p(€7D")
such that either p¢p’ and p€p (and therefore p€r) or pep<rF and pep’.
This completes the proof of Theorem 3. [X]

6. Correction operation. Any i-vector (1) such that 7/N7PD"=0 may be
treated as an incorrectly specified pi-vector. So the procedure for construc-
ting the pi-vector p = rN¢D" may be called a correction operation (in notation
p = Cor 7). In accordance with Theorems 2,3 this procedure consists of the
following steps:

1. Examine if for 7, conditions (a") and (b’) hold (i.e. if 7N ).

2. If FNPr=0 then construct the i-vector /, in accordance with (11)
and (12).

3.Findb;and g, forallj = 1, ..., nin accordance with (13) and (15).
4. Find a; and «; for all j = 1, ..., n in accordance with (14) and (16),
This completes the construction of p = Cor f.

Example. Let 7 be an i-vector defined as

F=([-12;51],(02; 1,2), (-0,3;02], [0,1; 1), (0,4; 0,5])



62 CHIRKOV, M. K.

and it is necessary to find p = Cor r. For 7, conditions (a’) and (b’) hold as
2 ¢; = 0,7 and Zd = 8. In accordance with (11) and (12) we find

P = (105 11, 0,2; 1, [0; 0,2}, [0,15 1), (0,4; 0,5]).
Now from (13)—(16) we have
p = ({0;0,3), (0,2; 0,5), [0; 0,2], [0,1; 0,4), (0,4;0,5]) .

Let R be an i-matrix defined as

F
N 72
R = ,
Flm
where FD¢@®@n i =1, ..., m. Then for R a correction operation is defined as

Cor FV

) B Cor 7®
P=CorR = .

Cor 7™

At last if ﬁgen = (X, A Y, FV, 1?) is a partial generalized i-automaton
then for Agen a correction operation is defined as

A, = Cor ,den = (X, A Y,pOR),

where p© = Cor 7, P = Cor R. This correction operation is important
for many areas of the partial pi-atitomata theory, in particular for the mini-
mization of such automata [2].
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