A GENERALIZATION OF THE FROBENIUS COMPANION MATRIX

By

LA JOS LÁSZLÓ

National Planning Office Budapest, V., Roosevelt square 7-8.

(Received November 3, 1981)

Introduction

Present paper generalizes the results of [2] concerning a set of matrices having a prescribed characteristic polynomial, and presents another special case giving Frobenius' companion matrix.

Theorem. Let $P(z) = \sum_{i=0}^{n} c_i z^i$ be a monic complex polynomial. For an arbitrary set $\{A_i\}_{i=1}^{n-1}$ of complex numbers, there exists an nxn matrix B containing these numbers and having P as its characteristic polynomial.

In detail, the following is true. Let us define the first n-1 rows of B via (a)-(c):

(a) For $1 \le i \le n-1$ let

$$b_{ii} = A_i$$
.

b) Let us fix $1 \le i \le n-1$, then there are two cases:

$$(b_1)$$
 If $A_j \neq A_i$ for every $i < j < n$, then let

$$b_{in}=1$$
.

(b₂) If $A_j = A_i$ for some i < j < n and $A_k \ne A_i$ if i < k < j, then let

$$b_{ij}=1$$
.

(c) For all the remaining elements of the first n-1 rows let

$$b_{ij}=0.$$

Then there exist complex numbers $\{b_{nk}\}_{k=1}^n$ in a unique way with the equality

$$det(z I - B) = P(z)$$

holding for the matrix $B = (b_{ij})_{i,j=1}^n$. [X]

Proof. Comparing the coefficients of z^{n-1} in (1), we have the requirement $c_{n-1} = -\sum_{i=1}^{n} b_{ii}$. Using this equality, b_{nn} can be determined:

(2)
$$b_{nn} = -c_{n-1} - \sum_{i=1}^{n-1} b_{ii}.$$

For uniformity – see (a) – let $A_n = b_{nn}$. Expanding the determinant in (1) by the last row we get

(3)
$$det(z \ I - B) = \prod_{i=1}^{n} (z - A_i) - \sum_{k=1}^{n-1} b_{nk} P_k(z).$$

If (2) is valid, then the degree of the polynomial

(4)
$$\Delta(z) = \prod_{i=1}^{n} (z - A_i) - det(zI - B)$$

is not greater than n-2. (1) is equivalent to

$$\sum_{k=1}^{n-1} b_{nk} P_k(z) = \Delta(z) = \prod_{i=1}^{n} (z - A_i) - P(z)$$

hence it is evident that there exist numbers $\{b_{nk}\}_{k=1}^{n-1}$ with the desired property if and only if the polynomials P_k , $1 \le k \le n-1$ constitute a basis in H_{n-2} . $(H_{n-2}$ stands for the space of the polynomials with a degree less than or equal to n-2.)

Now we introduce the following notations. Let $\{a_i\}_{i=1}^m$ be the set of the distinct numbers in $\{A_i\}_{i=1}^{n-1}$ and suppose that a_i occurs v_i times among the

$$A_i$$
's. Obviously: $m \le n-1$ and $\sum_{i=1}^m v_i = n-1$. Let

$$h_i(z) = \prod_{\substack{j=1\\j\neq i}}^m (z-a_j)^r j, \quad 1 \le i \le m.$$

As a consequence of the next lemma, the set P_k , $1 \le k \le n-1$ turns out to be identical with the set of the polynomials

(5)
$$h_{ij}^*(z) = h_i(z) (z - a_i)^j, \quad 0 \le j \le v_i - 1, \quad 1 \le i \le m.$$

These are similar to Hermite's interpolatory polynomials

(6)
$$h_{ij}(z) = h_i(z) (z - a_i)^j Q_{ij}(z), \quad 0 \le j \le v_i - 1, \quad 1 \le i \le m,$$

belonging to the same nodes $(Q_{ij} \in H_{r_i-j-1})$.

Since every h_{ij} can be expressed in the form

(7)
$$h_{ij} = \sum_{s=i}^{r_i-1} \gamma_{ijs} h_{is}^*,$$

furthermore, the number of the polynomials (5) is n-1, and finally, since the polynomials (6) form a basis in H_{n-2} , the same is true for the h_{ij}^* -s, i.e., for the polynomials P_k , $1 \le k \le n-1$. The proof is complete. \boxtimes

In the proof we used the following

Lemma. Let us use the notations of the Theorem, let $1 \le k \le n-1$, and $A_k = a_i$. Let us further suppose that the number of A_l 's, $l = 1, 2, \ldots, k-1$ being equal to a_i is j. Then

$$P_k = h_{ij}^*$$
.

Proof. Denote the submatrix arising from zI-B by deleting the last row and the k-th column by $B_k(z)$. Then, by definition

(8)
$$P_k(z) = (-1)^{n+k} \det B_k(z).$$

Let $B_k'(z)$ be the left upper $(k-1)\times(k-1)$ submatrix and $B_k''(z)$ the right lower $(n-k)\times(n-k)$ submatrix of $B_k(z)$, then the partitioning

$$B_k(z) = \begin{pmatrix} B'_k(z) & V \\ 0 & B''_k(z) \end{pmatrix}$$

shows that

(9)
$$\det B_k(z) = \det B'_k(z) \det B''_k(z).$$

Now det $B_k''(z)$ will be decomposed further, into v_i-j factors. In $B_k''(z)$ there are exactly v_i-j-1 's with $z-a_i$ in the same row or column. For each of these -1's, let us denote the square matrix being symmetric with respect to the main diagonal and having the -1 at its upper right corner, by $B_{ks}''(z)$, $s=j+1,\ldots,v_i$. In this way we get:

Above the blocks of the $B_{ks}^{\prime\prime}(z)$ -s there are zeros or, possibly, -1's, while below them - except for the $z-a_i$'s located at the junctions of these blocks - all the rest is zero. It is easy to see that, at calculating $\det B_k^{\prime\prime}(z)$, each term containing $z-a_i$ vanishes. Thus

(10)
$$\det B_{k}^{\prime\prime}(z) = \prod_{s=j+1}^{v_{i}} \det B_{ks}^{\prime\prime}(z).$$

The matrices $B_{ks}^{\prime\prime}(z)$ are of the form

$$B_{ks}^{"}(z) = \begin{bmatrix} 0 \dots 0 & -1 \\ & 0 \\ & & \vdots \\ U_{ks}(z) & \vdots \\ & 0 \end{bmatrix}.$$

Here $U_{ks}(z)$ is an upper triangular matrix having $z-a_l$ $(l \neq i)$ in the main diagonal. If we denote the order of $B'_{ks}(z)$ by n_{ks} , then

(11)
$$\det B_{ks}''(z) = (-1)^{n_{ks}} \det U_{ks}(z).$$

From (7) – (10) we get

$$P_k(z) = (-1)^{n+k} \det B'_k(z) \prod_{s=j+1}^{r_j} (-1)^{n_{ks}} \det U_{ks}(z).$$

Consequently, $P_k(z)$ contains all the factors $z-a_l$ with $l \neq i$. The factor $z-a_i$ is included only in $B'_k(z)$, and — by definition — exactly j times. As for the sign, the exponent of -1 is equal to

$$n+k+\sum_{s=j+1}^{r_j}n_{ks}=n+k+n-k=2n$$
,

therefore,

$$P_{k}(z) = \prod_{\substack{s=1\\ s \neq i}}^{m} (z - a_{s})^{r_{s}} \cdot (z - a_{i})^{j} = h_{ij}^{*}(z)$$

which was to be proved. |x|

Remarks.

- 1. If $A_i = 0$ for $1 \le i \le n-1$, then we have the system $h_{1j}(z) = z^j$, $0 \le j \le n-2$, and B is nothing else than Frobenius' companion matrix (see [1]).
- 2. If $\{A_i\}_{i=1}^{n-1}$ are distinct then the interpolatory polynomials of Hermite are reduced to those of Lagrange (i.e. to h_{i0} , $1 \le i \le n-1$), and B is the matrix in [2], or [3].
- 3. More can be said about the numbers $\{b_{nk}\}_{k=1}^{n-1}$. They are linear combinations of the derivatives of P taken at the given points. Indeed, by the basic formula of the Hermite interpolation and by (7),

$$\Delta = \sum_{i=1}^{m} \sum_{j=0}^{r_{i}-1} \frac{\Delta^{(j)}(a_{i})}{j!} h_{ij} = \sum_{i=1}^{m} \sum_{j=0}^{r_{i}-1} \frac{\Delta^{(j)}(a_{i})}{j!} \sum_{s=j}^{r_{i}-1} \gamma_{ijs} h_{is}^{*} =$$

$$= \sum_{i=1}^{m} \sum_{s=0}^{r_{i}-1} \left\{ \sum_{j=0}^{s} \gamma_{ijs} \frac{\Delta^{(j)}(a_{i})}{j!} \right\} h_{is}^{*}.$$

Since

$$\prod_{i=1}^{m-1} (z - A_i) = \prod_{i=1}^{m} (z - a_i)^{r_i},$$

on the ground of (1) and (4) we have

$$\Lambda^{(j)}(a_i) = -P^{(j)}(a_i), \quad 0 \le j \le v_i - 1, \quad 1 \le i \le m.$$

Thus, the coefficient of h_{ij}^* (i.e., one of the b_{nk} 's) is the linear combination of the numbers $P^{(s)}(a_i)$, $s=0,1,\ldots,j$.

- 4. Let $P(z) = \prod_{i=1}^{m} (z a_i)^{\nu_i}$ (i.e. we choose the A_i 's to be the roots of P with the respective multiplicities). Then, by the previous remark, we have $b_{nk} = 0$, $1 \le k \le n 1$, i.e. B becomes to an upper triangular matrix (comp. with the Jordan' canonical form of matrices!).
- 5. Let P be a real polynomial with distinct real roots α_i , $1 \le i \le n$, and suppose that they are separated by the numbers A_i , $1 \le i \le n-1$:

$$\alpha_1 < A_1 < \alpha_2 < \ldots < \alpha_{n-1} < A_{n-1} < \alpha_n.$$

Then the matrix B obtained from the Theorem can be symmetrized. Indeed

$$b_{ni} = -\frac{P(A_i)}{\prod_{\substack{i=1\\i\neq i}}^{n-1} (A_i - A_j)}, \quad 1 \le i \le n-1.$$

(see Remark 2.).

Since sign $P(A_i) = (-1)^i$, $1 \le i \le n-1$ (*P* is monic!) obviously $b_{ni} > 0$ for every *i*. Thus with

$$d_i = \sqrt{b_{ni}}$$
, $1 \le i \le n-1$, $d_n = 1$, $D = diag(d_i)$

the matrix DBD^{-1} will be symmetric.

6. Since the h_{ij}^{*} 's are relative primes, similarly to the Frobenius-matrix, the characteristic and minimal polynomials of B coincide (see [1]).

REFERENCES

[1] P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.

[2] L. Laszlo, Matrix Methods for Finding Roots of Polynomials, Annales Univ. Sci. Budapest, Sectio Comp., II. (1978), pp. 29-37.

[3] L. Mirsky, Matrices with Prescribed Characteristic Roots and Diagonal Elements, J. London Math. Soc., 33 (1958), pp. 14-21.