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1. Introduction

In this paper we present a new method for the approximate solution
of functional differential equations. The method is based on third-order spline
functions. Suppose that a partition is given on an interval on which we are
to solve a first order system of functional differential equations. At the
knots we construct approximate values of the solution successively in the
following way: the next value is obtained by substituting a third order spline
function into the right side of the equation, which takes the previous approxi-
mate values at the previous knots, and then integrating it on the next in-
terval. We prove convergence theorems concerning our method and the sta-
bility is also established.

Our method can be applied in very general situations whenever the
existence and uniqueness of the solution is assured. Namely, we impose a
Lipschitz condition on the right side and the continuity of the given func-
tions is assumed.

As we have simple recursive formulae for the approximate values, our
method can easily be programmed and the computations can be implemen-
ted on small calculators. We illustrate the method by a numerical example.
We proceeded the calculations by an electronic calculator TI—59.

Concerning other numerical methods for solving functional differential
equations based on spline functions see [1].

Throughout this paper R denotes the set of real numbers. If B is a Ba-
nach-space and x : [a, b]—B continuous or continuously differentiable func-
tion, then w(h, x) and w,(h, x) denotes the modulus of continuity of x and
X/, respectively.

2. Construction of the spline function

Let [a, b]cR be an interval and B a Banach-space. Fix a subdivision
a=ty<t<...<ty=">bof[abland let hy =tx—tx_, (K=1,...,N),
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further h = max hy, ¢ = h/min hy. 1f x: [a, b]—B is a continuously diffe-
I=K=N IsK=N
rentiable function, then we denote x, = x (fx) (K =0,1, ..., N).

Define the spline function S on [a, b] as follows:
) S(t) = Si(t) (tx-y =t=1y),
where

. 1
S,(t) = xl+'h_(x1_x0) (t—ty)
1

andfor K =2, ..., N

. 1 .
Sk(t) = xk +‘—I‘" (Xg = Xg-g) (t=1g) —
K
l 1 ] . 2 l 3
—— | — (k= Xg-1) = (g1 — lK—z)] [(t"tx)' +—(t—1x)*]
hg | hg hy—1 hy
It is obvious that S is continuously differentiable on [a, b].

THEOREM 2.1. For the spline function S defined by (1) we have for all
tinla, b]:

ix @)=S ()i = 6k w,(h, x),
XO-S@ = 12 w,(h, X). |
Proof. Lett,_,<t=<t, (K=1,...,N) then
x(t) = xg +X'(x) (t—1k),
where f < 1, < 1y, further let
XR() = X+ Xk —1x)
where X = X'(fx). Then using the Lagrange theorem, we have
()~ S(t)l, = llr(o KO+ IR = SO = (710 =il -+
l 1 1
+ "K——‘(\K*\K 1) h +2hK —(\K Xicp) == (Xg—y — Xk - 0)
- hy i ik -y
= 6h w,(h, X),

and
x'(t) = SOl = Ix"(t) = xkll + lIxi = S"(OI = [Ix'(8) —xkll +
1 1 i
+ 'XK —— (X — Xk - 1) +51\—(XA‘\K D)~ —— (Xg—1—Xx—p)| =
|i hy i 0% K-1 I

= IZwl(h, x) . l.;_(]
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THEOREM 2.2. Let Xy, X, in B begiven and||x, —Xx||<e (K=0,1,...,N).
Let S and S denote the spline function of the form (1) with the values Xgoy X-

Then we have for all t in [a, b]:
IS@) - Sl = (7T+4w e,

ISty - S'(ll = 22 ih— e. X

Proof. Let t,_, <t=<1t, (K=1, ..., N), then

INOENGIES “SK(t)—SK(t)H = X = Xpell + (= X 1) — (X = Xl +
hy

+2[|(xg = Xge—1)— (X = X 1)l +2 , (k=1 =Xk —2) = (X1 — X =)l =
K-1
= (T+4p)e,

and

I15°(t) = 8"l = ISk(t) = Sx(®)ll = % 1Geke = Xge—1) = (Xie = Xpe-)ll +
K

- 14

J . . o) . .
+ —|l(xg = Xx-1) = (X = X DIl + —— (X =1 = X —2) = (Xx -1 — X —)|| =
hy hy -1
=nt,. x|
h

REMARK 2.3. In case of equidistant partition we have ¢ = 1 and the
last theorem gives the estimates

IS -5 @)l = 11e,

NGRS 227". ]

3. Approximate solution of functional differential
equations

Let ¢, be a real numnber, 0<y <4, further let B be a Banach-space, and
O:[ty—6,t,] = B, f: [ty =) XBr* = B r;: [ty, ) > [p,8] (i=1,...,n)
be continuous functions where f satisfies the Lipschitz condition

Vs s Vs ) —F T - Te )l = LS =T
j=1

J
whenever t=t, and Yy j?'j areinB(j=1,...,n+1).
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Suppose that the function x : [f,— 8, ) B satisfies the system of equa-
tions

) X(t) = £(t, xO), x(t—r@®), - - -, x(=r0))  t=1y),
x)=06({) (h—0=t=tpy).
For T =1, let us consider the partition
tb—0 =t py<t_pyor1<...<lo<to<ti<...<iy=T

of [t,b—6,T], where fu—t,_, = hp<y (K= —-M+1, ..., N). Denote S
the spline function of the form (1) with the values xx=x (fx). Then S is an
approximate solution of (2). For if {,— d=<f=<f{,, then

IS@)—OM)l = [ISE)—x(O)]|=6h wy(h, x),
and if {={;, then
S —1(t, S®, SE—ri), - . -, SE—r )| =
=[SO —x @)+ |£(t. x), x(t =), - - - X = o)) -
= f(t, S@), S(t=ri(), - - -, S(t-r )| =

<1204, )+ L S [x(t—r D) — S(t—r )] =
j=o
= 120,(h, X)+6L(1+ 1) h wy(h, X),

where ry(f) = 0. Notice, that we know the values x, only for K=0, hence we
cannot compute the coefficients of S.
In the next step we construct the approximate values xx (K = —M,

—M+1, ..., N)and we show that the spline function S with these values is
an approximate solution of (2) and provides a good approximation for x.
Letxy = O (tx) for K= -M, —-M+1,...,0and

K+
@) Fisr = Ft [ J(tFx+ Rt =t St =ra®)s - - > St —ral)) dt
K
for K =0, 1,..., N—1, where
Xk = f(tK’ Xk S(K)(tK_rl(tK))’ RRY S(K) (tK_rn(tK))) (K=0),
Sty = O(t) (t,—d=t=ty)

and S(K, (K zl) denotes the spline function of the form (1) with the values
X;(j= =M, ..., K)on the interval [f,— 6, t]. Using (2) we have

fK+l

X1 = X(tg+1) = xK+f f(l, x(®), x(t —ry(?)), - - .,x(t—r,,(t))) dt
K
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and by the Lagrange theorem it follows for fy<f=t,,, that x(f) = x+
+X'(Tx) (t—1tx) where t <7p <ty ;. Let Sk, denote the spline function of
the form (1) with the values x; (j = —M, ..., K) on the interval [f,—9, fx].
Then we have
Xk +1 = Xk +all = ek —Xkll +
’KH

[ A (= o)) = St R+ Rl =i 2 St~ D) =
K

'K+1
=g —Zll+ L [ 1) — g — Rt — tiOll dt +
n K41 )
+L 2 [ I =r0) = Solt = r O)=lixic - Fil+
4

tK+1
+L [ [k =l + 1 (ei) =X (@l (i) + I (1) = il (=)t +
'k
n 'K+

JFL}Z1 f [lx(t =7 (1)) — Sy (t =T O + IS iy (t =7 1)) = Saey (E = D)II] it .
=¥

Now let )
O = max |lx;—x,
0=j=K
then

Xk +1—Xpc+ 1l =X — Xpell 4+ L e 4 4llxge — Xl + L

My +1
5 w,(h, X) +

+L -h%(; Lt i - - o Xtk = 1lti)) = It T - - > Sarlt = ralti))| +

+6L hhypqnooy(h, X)+(T+4p) L gyt b=

L

=lxg — Xl (1 + L)+ 2 h? w,(h, x) +

L2 . n
+ Y h? [”xK =Xkl + 2> lIx(tx — rj(tK)) — Sy (tx —rj(tK))” +
j=1

+ 2 ISy (i — "j(tK)) - S~(K) (tx _rj(tK))”] +

+6L R noy(h,x)+(T+4p) Lhndy.

This implies
Xk 417 X 41l = Ox (1 + €g) + €, h2 ey (, X)),



30 LENARD, M. AND SZEKELYHIDI, L.

where ¢, and ¢, are constants independent of . We remark that these cons-
tants are dependent on u. But if we suppose that g is bounded from above hy
a constant independent of /1, then the latter inequalities give us

Ok +1=C 1 oy(h, X),

where the constant ¢, is independent of h (see e.g. [2]).

THEOREM 3.1. Suppose that the functions in (2) satisfy the above men-

tioned conditions. Then the spline function S with the values X (K=-M, ...,
..., N) constructed by (3) has the properties

lx ()~ S (t)||=const. h w,(h, x)
x'(t)— S’ ()l = const. w,(h, x)

18— 1(1, S@), SE—nr®)), - - -, S(t=rat)) )l = const. w,(h, x)

fort=0and )
e~ S(t)||=const. h w,(h, x)

This theorem is an easy consequence of the previous considerations.
We remark, that the constants here may depend on the number u. But if
we let h—0 and u remains bounded (for instance uw = 1, in case of equidis-

tant partitions), our theorem gives the convergence of S to the exact solu-
tion.

4. Application

Now we apply our previous results for the following linear problem

(4) () = A x(O+ 3 A;x(t—j)+e (=0)

J
x(t) = O(t) (t=0)

where A; is a bounded linear operator of the Banach space B(j = 0, 1,..., n),
O :[—n,0]—-Bis a given function and ¢ is an element of B. In this case we
obtain particularly simple recursive equations for the approximate values x.

Let T=0 be an integer, h = TIV—and g = % (K= —Nn, ..., NT).

By (3) we have
Xx = Xx = O(Kh)

for K = —Nn, ..., - 1,0, and
—j+h
. . . h2 n
X, = x{,(1+A0h)+on{,—')—+Z A; f O(hydt+ch,

2 j4
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where

® - n .
j=0

(I denotes the identity operator). Further, for k=1

K+ 1K1
Yoy = Bt [ Ayl = Xkl - L))+ S A, j Suet—jydi +ch,
fk' Jj= 1

where
n
x;< = Z ijK—jN+C'
j=0
On the other hand, an easy computation gives

tK+ tK+1-jN
f Saot—j)dt = f St dt =
fK-JN
= h[—YKH Nt 2 Xk-jn — . - Xk -1- ,v]
3 12

Finally, we have the following recursive formulae for the problem (4):

% = O(Kh) (K= —Nn, ..., —1,0),
(5)

—j+h

p f oy dt,

—=J

= (I+A, h)x0+——

2

h
2] K+——[ZA A S+ Ag c]

Xg+1 = [1+A0h+A(2)

n 5 . 2 . | .
+h(‘+h Z AJ[—XK. 1_.j‘\]+’_xK_jN‘_‘—xK_1_jAy] (K:1)2) . -yNT).
A e 3 12
5. Example

Here we consider the example
X'() = S5x@)+x(f—1) (=0)
x{) =5 (- 1=t=<0)
(see [1]). The exact solution on [0, 1] is
x(t) = 663 — 1
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and on [1, 2] is
1 P

x() = [x(l)—%+6(t— 1)] est-1) +€.

Using N = 900 we obtain the results summarized in the following table:

Table

x() S x(t)-S(0
0. 5. 5. 0.
0.1 8.892327624 8.892302286 0.000025338
0.2 15.30969097 15.30960742 0.00008355
0.3 25.89013442 25.88992779 0.00020663
0.4 43.33433659 43.33388236 0.00045423
0.5 72.09496376 72.09402765 0.00093611
0.6 119.5132215 119.5113695 0.001852
0.7 197.6927118 197.6891493 0.0035625
0.8 326.5889002 326.5821876 0.0067126
0.9 539.1027878 539.0903372 0.0124506
1.0 889.4789546 889.4561617 0.0227929
1.1 1467.362361 1467.326525 0.035836
1.2 2420.772761 2420.730253 0.042508
1.3 3993.738812 3093.673437 0.065375
1.4 6588.865818 6588.765777 0.100041
1.5 10870.38298 10870.23076 0.15222
1.6 17934.15321 17933.92318 0.23003
1.7 20588.1594 20587.81453 0.34487
1.8 48815.2569 48814.74486 0.51204
1.9 80536.63293 80535.88165 0.75128
2.0 132871.3779 132870.292 1.0859
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