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1. Introduction

Free boundary problems are boundary—value problems in which
part of the boundary, the free boundary, is unknown and must be deter-
mined as a part of the solution. When a problem involves free boundaries,
the boundary conditions must be sufficient to determine both the solution
of the partial differential equation and the position of the free boundary.
On each of the free boundaries one extra condition, in addition to those nor-
mally required by the differential equation, is needed to determine the
solution.

In the case of two— dimensional problems, where function theory can
be applied, the solution in certain cases can be found analytically (see for
instance, Mason and Farkas (1971), Charmonman (1965, 1966), and Cryer
(1970)). For three—dimensional flow problems, for example those with
axial symmetry, solutions to familiar models (Young et al. (1955)) are not
known, although existence and uniqueness theorems have been established
(Garabedian (1964)). Other instances of free boundary problems have been
considered in (Doha, 1977).

When solving free boundary problems by the method of finite differen-
ces, it is implicitly assumed that the solution is sufficiently often differenti-
able and that the free boundary is smooth.

The main aim of this paper is the development of a general automatic
iterative finite difference technique based on Newton’s method. The use of
Newton’s method in solving free boundary—value problems was proposed
as future work by Young et al. (1955) and Sankar (1967). It seems that no
work has been done so far, this perhaps is due to the difficulty in dealing
with the partial derivatives with respect to the free boundary ordinates.

In the present paper, the general formulation of the problem is described
in section 2, while the numerical method is explained in section 3, solution of
one test problem is given in section 4, and in the final section discussion of
the results with some concluding remarks are explained.
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2. General formulation of the problem

We are concerned with free boundary problems of the following class.
Itis required to find a twice differentiable function u(x, y) which satisfies
the second — order self — adjoint elliptic partial differenctial equation

0 ou 0 ou
1 ~— P, y)—|+—|P(x, y)—| =0 x,y€D.
(1) 3x[ ( y)ax ay[( ))ay] Yy

Here P(x, y) is a positive continuously differentiable function of x and y,
while D is a bounded domain in the xy—plane with a boundary C which
has a continuously turning tangent except at a finite number of corners.

The solution u(x, ¥) of the free boundary problem must satisfy the
following conditions:

(2) a (X, ¥) u+py(x, y) u, = vi(x,¥) X, yeC

where o,(x, ¥)=0, Bi(x, ¥)=0, «,+8,>0, x, y€C- «, and f, are piecewise
continuously differentiable functions of x and y, u, = du/dn, n is the out-
ward normal to C.

The final condition which must be satisfied by u is the one which charac-
terized the problem as a free boundary problem. Part of the boundary, ¢,
is unknown and must be determined as part of solution. The free boundary is
required to satisfy certain geometric constraints and the following additio-
nal boundary condition must also be satisfied:

3) ag(X, V) U+ Bo(X, V) Uy = vy(X, Y) X, VEC,

where o,, 8, and », are of the same form as «,, f;, v;. It is assumed that the
six coefficients, o, through », are continuous on ¢,.

It should be noted that any two linearly independent combinations of
conditions (2) and (3) could be used, and it will be convenient to consider
the conditions in the simple form

4) u(x, y) = f(x.y),
(5) ”n(x’ y) = g(x,y) y X, YELy.

3. Numerical method

An iterative method is used to generate a sequence of approximations
¢ to the free boundary and u'® to the unknown function satisfying equa-
tlons (1), (2), and (5) on ¢ (k = 0, 1, ...). u® will generally not satisfy
condition (4) and the boundary is thus moved to c{k+1 to approximate
equation (4) better using Newton’s method.

The method of computing u® is given in section 3.1 and that for c¢®
in section 3.2.
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3.1 Finite — difference solution for 19

A non-uniform mesh is used, the spacing in the x-direction is chosen
arbitrarily. The spacing in the y-direction is again chosen arbitrarily ex-
cept that of the free boundary corresponds to grid line and the spacing for
that part of the mesh is chosen so that mesh corners lie on the free boundary
as shown in Figure 1. This part is effectively represented by the polygon
formed by the diagonals of meshes lying on it.

polygonal boundary
Y3
C
Y2
Yy
X, X X3
b3
0
Fig. 1.
We take the vertical mesh lines as x=x;, i =1, 2, ..., M, with
spacing p; = x;4,—X; and horizontal lines asy =y, j = 1,2, ..., N, with

§;=Y;+1—Y; Following Varga (1962), we associate with each point (x;, ;)
interior to the grid an area R;; bounded by the lines

1 1 1 1
xzxi——z‘Piv x:xr+‘2—l’;+1» .VZ,V,‘—ES,‘ and )’:.Vj‘f'ssjﬂ-

For points on the free boundary R;; is a quadrilateral as shown in Fi-
gure 2.
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interior point boundary point

W,
/]

Fig. 2.

For each gridpoint (x,, y]) where the function u(x, ¥) is unknown, Green’s
theorem is applied to the region R;; to give

(6) ff [——{P(x ¥) x }+%{P(x ¥) 2 }]dxdy =

- /[P(x, 228ty p(x,y) 2% dx] -0,
X oy
€ij
where C;; is the boundary of R, .

At mternal points the line integral in (6) is approximated by central
differences, giving

(7) Ejju;—Ajjugy j—Bijui—y j—Cijuy jo1—Dyuy ;- =0,
where

Aijj=P _(sj——1+sj)/Pi’
l+-2",]

B, ZP‘ 1 j(sj—l*‘sj)//’f--v

5
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Ciy =P ((pi-1+D)Isj»
l,]+§'

D;; = Pi j_L(Pi—1+Pi)/Sj—1 )

2
and
Ei]: A‘/+BU+C’]+D'}’
where
p =Px.+i Vv P =P1(__.1_ y
i+—;-,1“ i ZP,»., ’ i—é—,j—- X; 2p‘_1,'} ,
P = P[x,y,+~s;| and P = pPx,y—Ls
i,j+% = irYj 2 j i,j—-—;-_ i Vj 9 j-1f-

For points along the free boundary, the line integral takes the simpler
form

1 (Pi-1+p) [P,' j-l(uif — f—l)‘/sf_l] +
2 ]

Q
1 P u;—u, P, ou
+‘?T(Sj“1+sj)[ i+%,j( J 1+1’])/ ]+/P—5n—d5 =0,
P

the boundary condition (5) gives g-li = g(x, ¥) on the free boundary, and
n

so the finite difference equations for the points on the boundary may be
written as

Fijuy— Aty j—Dijuy ;- +2P; ;8 ;8;,=0,
where
Fij = Eij—Bij_Ci

]' )

I
sy =5 VPt s+ V).

Expressions can be obtained similarly for mesh points (x;, y;) on the
other boundaries, where u;; is unknown. This method is called the integra-
tion method. The great advantage of it is that it is easy to incorporate the
condition of the normal derivative, u,, on the free boundary into the finite
difference equations.

For problems where analytic solutions are not known (see, Doha (1977)),
the matrix derived from the boundary value problem (1), (2) and (5) has a
very simple block tridiagonal form, and so the system is solved by the succes-
sive over —relaxation method.
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3.2 Moving the free boundary

Let u(x; y;, Y{¥) denote the value of u{¥ at any mesh point (x, y;)
(I=i=M, 1=j=N) in the domain of solution D* where the free boundary
ordinate at x; is given by Y, then u(x;, Y9, V{9)is the value at the bo-
undary point (x;, Y¥). Similarly, we define u(x;, y;, Y{*) and u(x;, Y{**9,
Y{k+D) to give the interior.and boundary values of uf%*V in the domain
D%+1, whose free boundary ordinates are given by Y+

Let Py =(x;, Y),i=12 ...,M;j=12 ..., N be the grid po-
ints on C{¥ as shown in Figure 3.

The condition (5) is already satisfied on C{, while the second condition
on C{¥, condition (4), is of course, in general not satisfied at P,. Let P; =
= (x;, Y{k*D) be the point on the line x = x; through the point P; at which
(4) is approximately satisfied. Then,

u(x;, Y0, Y ) —f(x,, Y 0) # 0
unless C{¥ is the true free boundary, so we choose Y {k+! to make
(8) u(x,, y§k+1)’ y}k)) —f(x, y§k+ D) = 0.

Following hydrodymamics usage, define a “total” derivative of the
function u(x, y, Y) on the free boundary as

Du(x,Y,Y)/DY =0ul/dy|y-y +0u/dY |y=y
and application of Newton’s method to (8) gives

YW Yy Wy f(x., Y
@ vy (6, V3, Y1) ~fxi V)

d
Y ¢ (49) [ — Ly W
[DV}’o W ViR VI = g e V30

It is to be noted that the total derivative Du(x, Y, Y)/DY gives the
rate of change of u with respect to positional change and boundary change.
Because if we take C{*~1 to describe the shape and position of the free bo-
undary for (k— I)-th iteration, and C{® for the k-th iteration, then two chan-
ges happen.

(i) One is due to the positional change of the free boundary which means
that the derivative is evaluated at a different point of space, this is given

simply by du(x;, y;, Y{)/dy;] vy §0-
(if) The second is due to the change in the domain of solution and is given by
Dutcs Yy VIOV, 0 =
. u(x;, Yy‘), Y}")) —u(x;, Y]("), Y}"—l)) ‘

- (k) - Yy (k-1)
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Therefore,
(10) Du(x,, Y, Y $9)/Dy ® =

(i ¥, Y ),y

0 0
- (x,,y,, Y(k)"’/ Y(k)+(”/(k)

r)

Clearly only a change in the local ordinate of boundary affects the solu-
tion (strictly speaking the total derivative should include the effect of move-

ment of the complete boundary).
The first partial derivative in (10) may be calculated from the three—

point formula

(1) u(x, v, Yy _y g = lutx, Y0, ¥V §0) + 15 u(x;, ¥, Y ) +

i
+ 15 u(x;, V9, Y9),
where
I = (Qyj(_k) y(k) — (h) )/(y(k)"V(k)l) (y(k)_yyf)z)’
1; — (y](k)_y(k) )/(},(A) — y(k)) (y(k) (k) )
G = (yj.k)_y(k) ) (Ve y(k)) (y(k) — (k) D -

j—2

~

The second partial derivative may be approxnnated by
(12) [u(x;, YO, Y 0) —u(x;, Y0, Y E=D))[(Y P — ¥ (k1)

where u(x;, Y0, Y{0) is already known, but we have to calculate u(x,, Y{¥,

Y"‘ D), that is, the value of u from the previous iteration evaluated on the
new boundary. This can be obtained by extrapolating through the three
points (x;, YY), (x;. y{¥7Y) and (x;, y¥3V).

Alternatively, the second member of (10) can be approximated by
(13) [u(x,, Y %D, Y ) —u(x, ¥ k=D, Y fe=D) /(¥ {0 — y (k=)
and since u(x;, Y-V, Y{-D) is known, so we have to calculate u(x,

Y{k-0, Y{) which may be obtained by interpolation. Some other ways of

approximating the total derivative have been discussed in (Doha, 1977).
We should like to compare two ways of moving the free boundary in a
simple context. The alternatives are

(i) Newton’s method with D(x, Y, Y)/DY evaluated exactly;

(if) Newton’s method with D(x,Y,Y)/DY approximated by du(x,y,Y)/dy |y-y
(i.e. ignoring effect of domain change).

To compare these two methods, calculations on one test problem are
described below in section 4.
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4. Solution of Laplace’s equation inside a rectangle

Let u(x, y) be a function of x and y which satisfies Laplace’s equation

2
(14) *u  o*u _
0x2  9y?
D C
A B
| :
K a 7
Fig. 4

in a domain D of the form shown in Figure 4. The points A and B are
fixed, but the position of the side CD is not known in advance. The boundary
conditions are:

(15) ux,¥) =0 x,yeDABC,

and on the free boundary DC:

(16) uix,y) =f(x,y) xyeDC,

(17) 28 _px,y) xyeDC.
on

We can satisfy all conditions (15) by taking

(18) nw,y) = A,,sinh[”—” yJ sin [ﬂ x],
n=1 a a

where A, n = 1, 2,... are arbitrary constants.

2%
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Let y = C, be the k-th approximation of the shape and position of
the free boundary CD, and imposing the boundary condition (17) on it,
we get

g(x’ Ck) = z”: _f_li An cosh [ﬂ CkJ sin [ﬂ x]
n=1 a a a

]de

so that,

a

(19) A, = 2 f o, C,) sin

nn
nxcosh—— C,
a

0

Substitution of (19) into (18) gives:

., Nmw . nNxm
sinh — ysin— x

u(x, y,Cy) = = j a a g€, Cysin "= ¢ de,
T n= a
0

nw
ncosh—C,
a

therefore

. nw . nn
sinh——y;sin——x; a
g 7!

! a fg(e,c,,)sin”—“eds,
n cosh 2% Cy 0 a
a

2
(20) u(xpypCo = ;

M

1

hence
ou(x,yj Cy)
Y,

a

—Z mnTx /g(f Ck)sm—-EdE

yl=Ck a n=1

(=]

and

ou(x; y; Cp

a
2.1 nwx . nm fag(E,Ck)_ nm
X 3Ck sin ——

nx C,sin n—nxi fg(E,Ck)ﬂt—Edé,
a a a

0
then

a
Cy sin-% x,fg(&, C,)sin 2T raey
a a

0

Du(x,-, Ck, Ck)/DCk = "g‘j SCChz nx
an=1 a

1 na _ [0g(EC) . nw
21 + —ta h—C sin—-x sin Edé&.
(1) nz, n a a 'f 2C, l a
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It should be noted that if we put y; = C, in (20) and differentiate with
respect to C, (the free boundary ordmates) we would get the same expression
given by (21).

Returning to (9), and its application we get
(22) Cisy = Cp— u(x;, C, C) —f(xi, Cy) ,

Du(x;, C,, C) _ df(xiCy)

DC, dc,
where u(x;, C,, C,) is given by (20) and Du/DC, by (21), f(x;, C,) is given
explicitly by (16) and then df/dC,.

Special case.

If we take f(x, y) = sin Z x and 2x, y) = Z coth Zt—bsin _n_x’ then it
a a a a
is easily verified that the solution of (14)—(17) is given by

T S 1
sinh—ysin—x
a a
(23) ulx,y) = ,

sinh = b
a

and the free boundary is given by y = b.
In this special case we have

a
fg(s,ck)sin”—”sds =7 coth 0y {?
a a a

hence, equations (20) and (21) give

u(x, Cp C;) = tanh = C, coth = bsin —x,,
a a a
and
M = .E. sech2ick coth n_b_. sin _“_ X;
DC, a a a a

and accordingly (22) takes the form

[tamh£ C,—tanh ib]
a a

(24) Cpyy=Co—2 k=0,1,2,...).
T

44
sech?—C,
a

If we take b = 2, and a = = as a numerical example, then (24) takes the
form

(25) Coss = Cp— (tanh C, —tanh 2)

sech?C,

(k=0,1,2,...).
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Take C, = 1.0 as a first guess, then (25) generates the successive values for
C, which are stopped when the absolute error is less than 10-¢ (see, Table 1).

Table 1

k Cx

0 1.0

1 1.482014

2 1.815120

3 1.970916

4 1.999201

5 1.999999

6 2.000000

Returning to (22), if we neglect the contribution to the total derivative
due to the change in the domain of solution, then (22) takes the form

(26) Cysy = C,—(tanh C,—tanh2) (k=0,1,2, ...).

Again if we take C, = 1.0 as before, then we get the successive values for
C, given in Table 2.
Another problem has been solved analytically in (Doha, 1977), but
details will not be given here.
Table 2

k Cy

0 1.0
5 1.558432
10 1.741407
20 1.901212
40 1.980436
60 1.996160
80 1.999049
100 1.999746
120 1.999941
140 1.999985
150 1.999995
154 2.000000

5. Discussion of the results

In the previous section, we found that the chief difficulty was how to
move the free boundary. However, we have already used two alternative
ways (i) and (ii) mentioned in section 3.2.

Tables 1 and 2 show that the number of iterations needed for the solu-
tion of the problem to converge is 6 iterations by using (i) and 154 by using
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(ii). The obvious reason for this increase of the number of iterations is due to
ignoring completely the contribution to the total derivative due to the
change in the domain of solution.

Various ways of moving a free boundary have been tried by, for example,
Garabedian (1956), Cryer (1970), Aitchison (1972), and Fox and Sankar
(1973). The last ones applied Regula Falsi, a close relation of Newton’s
method, but they treated the problem as an N-variable problem in the free
boundary ordinates. It was thought that individual adjustment of boundary
points might lead to irregular shaped boundary and that some smoothing
might be needed, but this has not proved to be the case.

From the above discussion, we conclude the following:

(I) Method (i) is superior if we could calculate the total derivative analyti-
cally. Unfortunately, this is impossible for problems which have no
analytic solutions.

(2) Method (ii) is easy to apply, and it is a stable one. In general it converges
slowly, but we could accelerate its convergence by using Aitkens é2-pro-
cess. The obvious reservation is that the partial derivative due to positio-
nal change must have the same sign as the total derivative.

The chief limitation of the method in its present form is that one coordi-
nate of the free boundary must be a monotonic function of the other for
the mesh to be defined.
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