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In [1] Proizvolov proved the following statement. If a real valued
bounded continuous function defined in the Euclidean 2-space has the same
constant integral on every unit square, then the function itself is constant.
Later Maljugin [2] succeeded in proving the same, without the restric-
tion of boundedness.

The following problem seems to be interesting. What kind of figures
can replace the square in the statement mentioned above? Already in [1]
we can find a simple example which shows that the statement is not true
for disks of unit radius. This is not so surprising because the disks are in-
variant under rotation while the squares are not.

Our main result is the following. If a real valued continuous function
defined in the Euclidean 2-space has the same constant integral on every
semidisk of unit radius, then the function itself is constant.

Throughout the paper N, R?, 7" denote the set of integers, the n-di-
mensional Euclidean space and the Lebesgue-measure on R” respectively.

In the paper an important role is played by the following functional
equation

(1 F(x+u)+ F(x—u) = F(x+v)+ F(x—v)
where F:R”-R is the unknown function and x, u, véR”?, |u| = |v| = 1.

First we prove two lemmas concerning equation (1), which will be used in
the proof of our main theorem.

LEMMA 1. Suppose that the continuous function F : R?-R satisfies the
equation (1). Then there exist continuous functions f;: R-R (i = 1, 2,...,n)
so that

) F(O = S f) X = (%, -, x)ERM.
i=1

PROOF. For n = 1 the statement is obvious. Now suppose that the sta-
tement is true for n and the continuous function F : R"*1 4R satisfies the
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equation (1). Then the function F* : R*—R defined by
F*(x) = F (x,0) x¢R"
has also the property (1), and by our assumption, it has the form
n
(3) F¥x) =3 filx) x=(x;,%y, -..,x,)ER".
i=1
For any 0 > x¢R" let the functions 4,:R-R and ®A/:R-R (k€N,

k=>|x|/2,j = 1,2, ..., k) be defined as follows:

Aty = F(x, )~ F(0,1)
4) teR

WAi(t) = F [% X, t] - F[»j -1 X, t] :

.

k
Obviously 4, = >'® 4] for all k. Furthermore we show, using the notation

j=1
« = arcsin |x|/2k, that the functions ®Aj] are periodic with the period
2pk =2cosa(j = 1,2, ..., k). Substituting the vectors

2j—-1 1 1
x)t+ k]7 —X, § ’ —X, — k]
[ 2k P *| [ ok P ] [ P
into (1) for x, u, v respectively we have

WAt +2p%) = F[%x, t+2pk| - F[ii—l«x, t+2p§] =

= F[—j—x,t]—F["—1 x,t] = W A4 ().
k k

Thus A, is periodic with the period 2p% for all k, hence gk = 2(p&+1— pk)
is also a period. Since lim ¢¢=0, the function 4, is constant on a dense subset
K=o
of R and by the continuity it is constant on the whole R:
4,(t) = 4,0) = F*(x)—F(0, 0).

Substituting this into (4) we get the desired result:
F(x, t) = F*x)+ F(0, )= F(0,0) = 3 fix)+fns(t)
i=1

where Jas1:R=R, [, = F(0,)— F(0,0).

LEMMA 2, Let H,cR*(n=2) be a Lebesgue-measurable set with finit
positive measure and suppose that

() (X3, Xy ..., X,)EH, implies (—xy, Xy, ..., X;)EH,
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Furthermore let F : R®~R be a continuous solution of the functional equation
(1) such that

(6) [ Fydam =0

T(H1)
for all motions T : R*—~R". Then F is identically zero.
PROOF. By Lemima 1. there are functions f; : R—R such that

FO) = S fix) X = (% Xp -0 X,)ERT.
i=1

Without loss of generality we can assume that F(0) =0 and f(0) =0
fori=1,2,...,n.

First we show that f; is identically zero. For any f¢R let T,: R*—R"
be the translation

TXyy Xoy ooy Xp) = (X141, X5y .., X))

Then by (6)
0 S [ Fdine) = [ Fedre =
=1y, H,
= [ F@dr = S [ F@dr,
T(H)) =1 T74Hp
where

F,:R"=R, Fx)=f(x) (=12 ...,n).

Fori = 2,3, ..., n we have

[Fdre = [ Fydne.
H,

T (H\)
Thus (7) implies that
®) [ E@are = [ F@die.
H, T(Hy)

Now let M : D (cR)—~R denote the Lebesgue-measurable function defined
almost everywhere by the formula

M(s) = i-YH,N{x€R*|x, = s})) seD.
Then by the Fubini Theorem and (8) we come to

© [16) ME) dx) = [ F@) dar) =
e Hy

= [ F@dr@ = [£6) M- dis).
TdHy) —
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By (5) M is an even function, thus (9) implies
(10) [ LA+~ MEdAE) = [ [+9)+A—9)] ME) di(s).
0 0

On the other hand — as it will be shown later — we have

(11) Silt+8)+A=8)=2fi(H) = L) +fi(—s) s€R

which together with (10) proves the statement:
filty-n(Hy) = 2-£(t) [ M(s) d A(s) = 0.
0

It can be proved in the same way that the other functions f, are also
identically zero (instead of H, one should use in the proof a set H; which can
be obtained from H, by a suitable rotation).

The equation (11) for |s|<1 is a direct consequence of the functional
equation (1); letting « = arcsin |s| and r = cos «, we have

(12) [fi(®)+L(N]+[A(=9)+/(-N] = L(D+L(=1) = [HO+L(D]+

+AO +L(=D]-240) = [AE+)+LN]+ [AE=8)+(=N]-2/ O

Now suppose that (11) holds for |s|<méeN. Let m=s<m+1 then using (1)
and our assumption we get

[+ +HA(E=9)=2A1) = [2it+s-D+L(D)+f(— DA +5-2)]+

+ A=+ D+LD)+f(= D)= filt—s+2)]-2/() = 2[L(D+ (- D] +
+2[A6 - D+A(=s+ D+ 2101 - [/ - 2)+ fil =s+2)+ 2/,() ] - 2/i() =
=2[A(s=D+A(=s+ D]=[A6-2)+(—s+2) ]+ 2[L(D) +1(- D]

Thus f,(t+5)+f,(f—s)—2f,(f) does not depend on ¢ and so, choosing { = 03
for m=s<m+1 we have (11). Finally (12) and the last argument prove
(11) by induction.

- THEOREM 1. Suppose that the continuous function F : R?~R has the
same constant integral on the images T(K,) of the semidisk

Ko = {(x, )R |x*+y*=<1, y=0}
for all motions T : R2—~R¢, i.e.
J Foy)diy) =c.
T(Ko)
Then F is identically constant.

PROOF. According to the preceeding lemmas it is sufficient to show that
F is a solution of the functional equation (1).
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For any «€R, f€R let T¢ : R2—~R? be the translation
Tix,y) = (x+t-cose, y+tsina) (x,¥)ERZ.

Let the semidisk K, be defined by turning K, around the origin by the angle
«. Then the function /, : R—R defined by

L= [ Faxydiwy =c teR
T(K,)
is differentiable at f = 0, and

a+ta
(13) 1(0) = f F(cos ¢, sing)cos(p —x)dp = 0.

a$

It is easy to see that the function p : R—R defined by
p(¢) = F(cosg, sing) @€R

is periodic with the period 2z, continuous and for any «€R

at+

19 [po+n)-cospdp= [ p)-costp—a)dy = 0.
0 «
Denote by S, the n-th partial sum of the Fourier-series of p, i.e.
S,.(p) = %+ Z": (apcosko+b,sinkg)
k=1
which converges to p in L, norm:
IS, —pl* = f (Snlp)—P(9))2d 90
0

Then the Cauchy-Schwarz inequality yields

=

fSn(<P+<z)-COS¢dqv f[Sn(¢+«)—p(¢+a)]-COS¢d¢
0 0

sz [sn<<p+a)—p(q>+a>12d¢-Vfcos2¢d¢s
0 0

2n . —
= [Sp+a)—pla+x)2de- |/ = =1IS,—pll |/ =-0.
Vi ENE
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Now, integrating term by term, we have

fSn((p+oc)cos<pd<p =a—?;1005a
0

+_L§g [ifygkﬁ_

cos 2 — Kz G 2ka] 2¢R,

o L 4k2—1 4k —1
i.e. by n— - we obtain
(15) ﬂCOSa+—bﬂ- sinoc+zw: [ﬂcos%a——ék‘l—z" sin2ka]=0.
2 = - 42— 1

Next we show that the trigonometric series (15) are uniformly convergent.
Indeed
4kb,,

(16) Z [ e 1cos 2k

k=1

= 4k|byy 4k|ay,|
+| szk I] 2[4/(2—1 4k —1

and according to the Bessel- mequallty we have

= az = 1 &
(17) (b3 O+ > (aE+b)=— [ pp)de < =
:Zl 2 nZ=;1 nbf

and on the other hand

= ( 4k P o (4ky .o |
18 2 [ 2 =8 L < oo,
(18) 21[41@—1) = Z[w] 2

k=1 k=

(17), (18) and the Cauchy-Schwarz inequality yields

Zj[%“’“”zuﬁ—,il‘az"l] 1/22[41&—1] VZ(bg"Hg")“"

which together with (16) proves the uniform convergence of the series (15)°
Hence (15) is the Fourier-series of the identically zero function, and so

a4=0, b=0, a,=0, by=0 (keN).
Now let us notice that for any pcR and k€N
cos(2k+ 1) (p+m)+cos(Zk+1)p = 0,
sin(2k+ 1) (p+m)+sin(2k+1) ¢ = 0.
Thus for any p€R and neN it follows
n-1
[—2_]
Su(@) +S8n(p+m) = ao+ 2 apesa[c08(2k+1) @+ cos(2k+ 1) (p + )] +
k=1
—1
(=]

+ D) bagea[sin(2k + 1) @ +sin(2k+ 1) (9 +71)] = .-
k=1




ON FUNCTIONS HAVING THE SAME INTEGRAL 9

Denoting by 7.: R—R the translation 7,(¢) = ¢+, we can see that S, +
+S, o1, = a, converges to p+ p o 7, in the L, norm. Thus

(19) plg)+p(e+a) = a,

holds for a.e. p€R, and because of the continuity of (19) holds everywhere.

Of course the procedure described above can be carried out for any
unit disk of R?, and leads to a result analogous to (19). Namely this means for
the function F that for any (x, y)é¢R? and —n=a=x we have

F(x+cos a, y+sin a)+ F(x—cos «, y —sin a) = a,(x, ¥)

where the function a,: R2—~R does not depend on «. This last equality is
exactly the functional equation (1) in the two dimensional case.
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