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1. Introduction

The Chebyshev polynomial T,(x) of degree n appropriate to the range
[—1,1] of x is defined by the relation

T,(cosx) = cosn ¥, x = cos 9.

It is well-known that T, (x) differs from zero on [—1,1] less than any other
polynomial of degree n having the same coefficient of x*, and hence a Cheby-
shev series can by expected to converge more rapidly then any other poly-
nomial series. A Chebyshev series also generally converges more rapidly than
a Fourier series, particularly for a function which is not truely periodic (See,
Fox & Parker (1968)).

The solution of parabolic equations in Chebyshev series has been consi-
dered by many authors, among them Elliot (1961), Mason (1967, 1969),
Boateng (1975), Fox & Parker (1968), Knibb & Scraton (1971), and Dew &
Scraton (1972). Knibb & Scraton (1971) have considered the solution of the
equation

ol nu
1 Pix) =L =
() () ot ax

subject to the boundary conditions u = 0 when x = 41, and u = f(x) when
t = 0. Dew & Scraton (1972) have developed an improved procedure for equ-
ation (1) with P(x) reduced to a constant and with the slightly more general
boundary conditions

u+a—ai=0,x=l&u+ﬁﬁl—=0,x= -1,

0x 0x

and u = f(x), t = 0.
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In the present paper we develop a technique for solving (1) with P =
= P(x) subject to the more general boundary conditions

@) oc1u"|‘/31ﬂ =y, x=1,
ox
ou

(3 U+ By—— = pu(f), x= —1,
ox

and

C)) u=fx), —l=x=1, t=.

Throughout this paper we assume that f(x) satisfies the boundary con-
ditions (2) and (3) to make sure that the solution is free of discontinuities.
We assume that f(x) and P(x) are known Chebyshev series

) f) = 3 fuTul®)
n=g

and

(6) P(x) = 3 P, T,(x).
n=0

We also suppose that u(x, f) can be expressed as a Chebyshev series in the
form

oo

(7 ux,t) = 2" an(t) To(x).

n=0

Here, 2’ denotes halving the first term in the series.

A numerical solution of equation (1) can be obtained by tabulating the
coefficients a,(t) for a range values of f. This process may be accomplished by
replacing the partial differential equation (1) with its boundary and initial
conditions (2), (3) and (4) by a system of ordinary differential equations for
the coefficients a,(f) and then solve this system of equations.

2. The system ordinary differencial equations for a,(t)

Let ¢,(f) be the coefficient of T,(x) in the Chebyshev expansion of
Pe) 2L 5o that
ot

() Px) 2L = S 0.0 To).
31 n=0
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We also assume the following expansions

ou <7
9) — = 2 au(t) Ta(x),

ot Ao

’u _Z
10 — = > a®W) T,(x).

(10) = 2, O T
From here on we shall write a;(f) = % = a;. If we satisfy the differential
equation (1) get
(11) q, = a?, n=0.
If we use the relation (Clenshaw, 1957)
(12) am —aiiz = 2(m+ 1) agyy,

and if we write (11), for m = n, m = n+2; subtract one from the other and
use (12) with s = 2, we obtain

Gn—Gn+2 (N
13 —0 TS = apyy, n=0.
(13) TR 2
If we do the same again with (13), with s = 1, we have

1 Gn—qGn+2—Gn+a qn+2_qn+4} —a n=0
n+2» =
2(n+2) 2(n+1) 2(n+3)

rearranging this, and changing the subscripts, we get

(14) an — qn—z _ qn 4 qni? ,
4n(n—1) 2zn—1)(n+1) 4n(n+1)

From (6) and (9) have

P(x) 24 Z’ a, Tr(x) Z Py, Tr(x) =
(15) - % 305 3 PolTren() + Trenl)
Equations (8) and (15) give
(16) m = l‘ i/a;(Pn—Fm-l'Pn—m)'
2 n=0

It is to be noted that P_, = P,, and similarly for all the other coefficients.
On making use of equation (16}, equation (14) can be written as

(17) alt) = 3 A 60, n=2,
i=0
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or in the matrix form

(18) Aa =a,
where
| 1
Am‘:'—— Pn—i— +Pn i-2) Pn—'+P, i)t
8n(n—1) ( 2% Prsica) An—1)n+1) (PritPosd)
1
19 b (PiiiatPoiis), n=2, i=0.
( ) 8n(n+]) ( +i+2 +2)

The boundary conditions (2) and (3) can be written as

20) R+t B) a+ 3 [t nt B 4 = n),
n=2
@1 T at) (= s m(t) + 3 (= 1)laa—n* Bl anft) = 7al0),
n=2
which, after some manipulation, can be put into the form
(22) D 1S el = 2,0,
n=2
(23) a(t) + > v ant) = Aot),
n=2
where
(24) tn = {(@y+ B, n?)(ay — B3) +

+ (= 1) (g — 12 Bo) oy + B} (20, 0y — oy B+ @y 1),
(25) vy = {op(oy + 12 By) = (= 1)  ay(ay — 112 Bo)} [ Ry oty — oy B+ 1)
(26) At = {(xy— Bo) vi(D) + (1 + B1) 7o)} | Rty 2y — &y By + 5 )
and
(27) Ao(t) = {oe i) — 21 ()} | (21 %y — 0ty Byt 25 By)-

Equations (22) and (23) are true for all £, and may be differentiated with
respect to f; the resulting equations can be used to eliminate ag(f) and a;(t)
from (17) to give

an(t) = Ano li(t) + Anl }';(t) + Z (Ani - Ano Hn— Anl vn) a;(t)
i=2
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or

(28) a,(t) = bo(t)+ > By a(t)
i=2

where

(29) b(t) = Ano A(t)+ Any 25(0),

(30) Bni = Ani_ Ano Un— Anl Vp-

It is now necessary to assume that a,(¢) and a;(f) are negligable for n>N.
Equation (28) can then be written in the matrix form as

€2)) a=Ba+b,

where
a,(?) By, By . .. By

a_a(t) By, Ba . . . Bsy

a(t) = B =

Lan(?) By Bys - - - Bayn
by(t)

yo| 50

ba(t)

Also, on making use of the initial condition (4), equation (7) yields
a,(0) = f,, at once, so
f

(32) a(0) =1 = fy

Lin
Equation (31), represents a system of nonhomogeneous linear differen-

tial equations with constant coefficients. It is then necessary to solve the mat-
rix differential equations (31) subject to the initial condition (32).

3. Solution of the matrix differential equation

A formal solution of equation (31) is given by (see for exemple, Bell-
man & Cooke, 1963):

(33) a(t) = eB'”l—a(O) — Bt [ e85 b(s) ds],

where, as usual, 4! = i (tA)*/k!; A being a square matrix.
=0
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If b() is composed, say, of exponential or oscillatory functions, a par-
ticular integral of equation (31) can be obtained by elementary means, and
the complementary function can be tabulated by means of the step-by-step
formula

(34) amtl = @(—AtB1)an,

where ¢, = mAt, a™ is an approximation to a(f,), and @(— At B~1) is a ratio-
nal approximation to e~4f8™ The best known rational approximations to
e~% are the Padé ones (See, Varga, 1962).

Another analytical solution to the matrix differential equation (31) can be
expressed as (Fox & Parker, 1968):

N

(35) a(t) = > («;ehi'+B)u;,

i=1

where u; are the eigenvectors of the matrix B~* with eigenvalues 2,, assu-
med distinct, », are the eigenvectors of the transposed matrix (B=*)T, and

T T
Vi 'a(O) Vi -C[
P T Bi= Y
vi U, vi - U;

where
t
¢, = — B[ eut=9b(s) ds.
0

Formula (33) is impractical if B is a large matrix, while formula (35) is pro-
bably the best when N is small, and the computation is not very difficult,
and changes in the initial conditions, giving the vector a(0), are easily incor-
porated. For larger values of N the determination of the eigenvalues and ei-
genvectors can make formula (35) an uneconomical method of solution.

In the following we consider some schemes for approximating the solu-
tion of (31) in which the time variable is discretized. The first discrete method
is obtained by approximating (31) by the difference equations

1
m+L am+1 —_am m+—

(36) a *=B—= 4+b * m=0
At
a° = a(0),
where
1 1
m+— m +1 + m +1
oz @rtanti o miy brabmrl
2 2

Solution of (36) for am*! gives:
antl = —[2] - AtB-']"t[2]+ At B~ ']am +
(37) + At[2] — At B71]71 B ![b™ + bm+1] 4 0(4f)3.
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It is to be noted that this approximate solution is equivalent of using a
(1.1) Padé¢ approcimant for @(— A4t B~1.) Also it is worth mentioning that in
the actual computer implementation of (37), it is more economical to solve
the equations (36) in the form

(37') [B —% At ]]Em+1 = AtTam+ At I(bm+hm+1),

then
amtl = am+£m+l_

This formulation saves arithmetic operations as well as round-off errors.
Formula (37) is a suitable one to use, notably, if b(f) is a more complicated
function of time.

It is also worth noting, that if b is independent of time, then the solu-
tion of (31) is given explicitly by

a(t) = eB't{a(0)—b} +0b,
and hence
(38) amtl = @¢(—AdtB-){am—b}+b.

Here a (2.3) Padé approximant can be used to approximate the matrix
@(—At B~1), and this requires the determination of the matrix

B(— At B-Y) = [38 _3 a3 (aypB-
5 20

1 -1 2 1
39 —— (4031 B3+ — At B*+—(A41)? B|.
(39) () ] [ - () ]

If At is small, it is obvious that the matrix to be inverted approximates to
B3, and this is less wellconditioned than B. Therefore, it is preferable to write
equation (39) in the alternative form

O(—AMB1) = 1+AI{B—%AII+

-1

(40) +_1]5 (m)v[BﬁLE'6 (At)2[B—ll—0At1]-l]—l} ,

which requires no more arithetic.

If @ is taken as a Padé approcimant with denominator of higher degree
than the numerator, tabulation using equations (34) and (38) is necessarly
stable. Knibb & Scraton (1971) have reported that the use of a (1.1) Padé
approximant to @(—4tB~1) may cause some oscillation in the tabulation of
a™, but this oscillation can be avoided completely by using a more satisfac-
tory Padé approximant in which the denominator is of higher degree than the
numerator (See for example, formula (39)).



®
122 E. H. DOHA

To sum up the method, we first find the matrix B from equation (30);
then form the matrix @(—A4t B~') by means of equations (37) or (39); then
tabulate a(?) for the required values of #, and finally ay(#) and a,(¢) for each
t from equations (22) and (23) respectively.

To conclude this paper, we wish to report that the previous method has
been applied by the author to the boundary value problem for parabolic
problems is two-space variables; the results will be published in a forthco-
ming paper.
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