SPACE —TIME TRADE —OFFS IN PRODUCING
CERTAIN PARTIAL ORDERS

PETER RUZICKA
(Received October 24, 1979)

1. Introduction

From everyday programming experience it is well-known that one can
often speed up programs at the expence of using extra storage space and al-
ternatively that one can often reduce the storage space at the expence of in-
creasing the computing time. Thus, it is quite natural and from the point
of view of computing fairly important to investigate whether these pheno-
mena correspond to some general computational trade-off.

In this paper we deal with problems of producing partial orders (on some
set) with one particular element, the centre, around which the set minus
the centre is divided into a subset of elements less than the centre and a
subset of elements greater than the centre. Many of the well known selec-
tion problems can be understood as tasks of producing certain partial
orders with the centre.

The classical time complexity problem was formulated as the one to
find time-optimal algorithms without paying any attention to the space nee-
ded for the computation. In this paper we investigate the problem of time
complexity in limited space. We start with determining the “allowable” space
interval in which it is sufficient to find time-optimal algorithms. We do it
by examining the minimal space required by a time-optimal algorithm and
the minimal space required by any algorithm solving a problem. For certain
problems the space interval is trivial, i.e. there does not exist a space-time
trade-off for this problem. We say there exists a space-time trade-off for a
problem if there does not exist an algorithm solving this problem simulta-
neously in minimal space and in minimal time. Our major goal here is to in-
vestigate a continuous space-time trade-off, i.e. we study the effect of the
added space on the time complexity of a problem. Finally, we investigate
the number of memory transfers done by time-optimal space -minimal algo-
rithms producing partial orders with central elements.

7 ANNALES—Scctio Computatorica—Tomus I1.

98 P. RUZICKA

2. Problem and model of computation

Consider we are given a totally ordered finite set X, the reservoir. The
order is not known initially and can be determined only by performing suc-
cessive binary comparisons between elements of X. In this paper we shall in-
vestigate the problem of producing the partial order S% on k+m+1 ele-
ments, where a particular element, the centre, is smaller than k other ele-
ments and greater than the remaining elements.

Algorithm solving our problem can be represented as a finite computati-
on tree with a finite number of memory cells (so called working space) and a
one-way read-only input tape. Inputs, i.e. elements of the reservoir, are read
from the input tape into a specified memory cell. Comparisons may be made
between the contents of any pair of memory cells. In a computation tree
each interior node is associated with an operation and the output takes
place at the leaves of the tree. Comparison operation have either two bran-
ches (=, > comparisons) or three branches (<, =, > comparisons), the in-
put operation has one branch. A problem is described relative to a size para-
meter n (which can be the number of elements to be processed). For each n
there is a finite tree with a finite number of memory cells to describe the com-
putation. The computation obviously begins at the root of the tree and
proceeds from node to node until a leaf is reached. A path of greatest length
(i.e. with the greatest possible number of comparisons) indicates the worst-
case time complexity of an algorithm* and the number of memory cells used
indicates the space complexity of an algorithm. The time (space) complexity
of a problem is the minimum time (space) complexity over all algorithms
solving this problem.

The notation P/ (n) is used to denote the time complexity of the prob-
lem P over the n-element set under a space restriction f(n); Py, (1) denotes
the space complexity of the problem P solved by doing at most f(n) binary
comparisons.

Furthermore, we use the following notation:

0 f(n) = 0(g(n)) iff there are constants c>0 and k=0 such that for all
n>c f(n)=k-g(n) holds.

Q f(n) = Q(g(n)) iff there are constants ¢>0 and k>0 such that for all
n=c f(n)=k-g(n) holds.

0 f(n) = O(e(n)) iff f(n) = 0(g(w)) and f(n) = 2(g(w)) holds.
o f(n) = o(g(n)) iff the limit of f(n)/g(n), as n tends to infinity, is 0.

3. Minimum-space algorithms

3.1 (Partial order S%_;) A widely used algorithm producing the partial
order SY_, isoptimal with respect to the space and time requirements simul-
taneously. This yields a non-existence of a space-time trade off for this

* Throughout this paper the notion time complexity of the algorithm is often interchan-
ged synonymously with number of comparisons used by this algorithm.

SPACE-TIME TRADE-OFFS 99

problem. Furthermore, n—1 memory transfers are necessary for each algo-
rithm using impli cite data structure (i.e. a data structure without explicite
indices or pointers) and producing S%_, simultaneously in minimal time
and in minimal space.

3.2 (Space-optimal producing of a partial order S%_,). It is fairly easy to
find an algorithm producing a partial order S}_, in minimal space. We pres-
sent, as an example, the following algorithm which requires 3 memory cells
A [1...3] and 2n—3 binary comparisons:

procedure SECMINSP ACE(n);
begin
read (A[1], A[2]);
it A[1]< A[2] then exchange (A[1], A[2]);
M~1; m+2; t+3;
while the input tape is not empty

do
begin
read (A[t));
select
A[t]= A[M]: begin
exchange (¢, M); exchange (f, m)
end;
A[t]= A[m]: exchange (f, m)
end
end;
return (A[M], A[m])
end

It isnot hard to determine the lower bound on time required by the space
optimal algorithm for this problem. Consider the directed acyclic graph (dag)
whose nodes correspond to elements in memory cells and whose edges corres-
pond to the ordering between elements in memory cells as specified by the
partial order underlying the previous computation. As the computation pro-
ceeds, the dag is changing in the following way. Initially, it consists of an
empty set of nodes and at each step of the computation an egde between two
compared elements is added and oriented to minimize the number of paths
of length greater than one. Whenever the paths of length two occur in a dag
they are shorten by eliminating all terminal nodes together with edges lea-
ding to them. These nodes are then replaced by singletons from the reser-
voir.

If a dag with 3 nodes is considered and there are additional n—3 single-
tons in the reservoir, then 3 comparisons are necessary for the first eliminati-
on and 2 comparisons for each of the following n—3 eliminations are neces-
sary, thus giving

Claim 1
SEC¥n) = 2n-3.

8 ANNALES-—Sectio Computatorica—Tomus II.

100 . P. RUZICKA

Furthermore, each algorithm producing S}_, in minimal space makes at least
Q(n) memory transfers.

3.3 (Minimum-space required by time optimal producing of S}_,) The time-
optimality of the SEC(n) problem has been proved by Schreier and Kislitsyn
(see in Knuth (73)). Time-optimal algorithm can be exhibited in the follo-
wing manner:

procedure SECMINTIME (n);
begin

1. Set up a balanced binary tree for a knock-out tournament for a set
X of size n;
- comment the winner of the tournament is denoted as first;

2. sec—- MAXIMUM {the set of all elements compared in step 1 directly
with the element first};

3. return (first, sec)
end

This algorithm makes n—2+T log n1 binary comparisons and a straightfor-
ward implementation by means of tree data structure requires O(r) space.
We investigate the minimum space required by the time optimal algorithm
for this problem. We prove that the problem of producing the partial order
S!_,canbe computed simultaneously making n— 2+ log n 71 binary compari-
sons and using 1/2 log%(n)+ @(log n) memory cells. The existence of such an
algorithm together with Claim 1 implies a space-time trade-off for the
SEC(n) problem.
We first show that for a time optimal algorithm O(log? n) space suffice.

Lemma 1
SECn_24r10g n1(ny (N)=1/210g2% n+0(log n).

Proof

Assume that n = 2* for some k=1, other cases follow easily. We present an
algorithm to producé a partial order S!_, which is optimal relative to the
number of comparisons and which requires space for maintaining O(log? n)
elements. This algorithm uses an implicit data structure based on the bino-
mial trees T, which are defined inductively as follows: a single node forms a
tree T,, and two copies of a T, with an additional edge between two roots
form a T,+,. An alternative and very useful representation of a binomial
tree T4+, can be viewed as the root of k+ 1 sons beingrootsof T, T,_y, . . ., T,
respectively. Our algorithm needs to save only two upper levels of each
binomial tree. Therefore it is sufficient to consider two-level binomial trees
which will have the form: B, = S?fori = 0,1,2, ...,T log n 7. Initially this
algorithm contains n elements on the input tape. At each step of the computa-
tion two elements of the input are read into the working space, and whene-
ver possible, two copies of B, are used to construct B, ,.

SPACE-TIME TRADE-OFFS 101

procedure SECI (n);

begin
comment the number n of elements on the input tape is even and at least
two;
repeat

read two elements from the input tape into the working space;
i~0:
while there are two copies of tree B; in the working space
do
begin
put together two copies of B; to give B,+y;
i~i+1
end
until the input tape is empty;
return (the root of tree B;, maximal son in tree B;)
end

To bound the number M of elements used by this algorithm it may be ob-
served that the while cycle is the only step of the algorithm which requires
any space. At the worst case it requires (when all the trees B; are present at
the working space)

M@4) =4
M@2ky = k+ M2k~ for k=3
and so
M(n) = 1/21log?n+0(log n).
To complete the proof of an 1/2 log? n+0(log n) bound on the space it remains
to show that maintaining a forest of two-level binomial trees implemented
compactly in an array will need no additional space. Consider an implemen-

tation of the forest {By,, ..., Bx|k;>...>k;=1} in an array A in the follo-
wing way:

By, is saved in A[l. .k, + 1] with the rootin A[l];
By, issavedin Ak, + ... +k_,+t. ki + ... +k+t]
with the root in A[k,+... +k_,+t]fort=2,...,5s.

Given the number N of processed input elements, the position of each two-
level binomial tree from the forest can be determined by computing the bi-

logn
nary decomposition N = >' b, 2! with b;€{0,1}. For each b, = 0 in the
i=1

binary decomposition of N one B, is present in the working space. O

Further we prove that this bound is optimal to within a lower ordered
term. In order to show the asymptotical space-optimality of the previous
algorithm we give a characterization lemma applicable for optimal algorithms
over all time optimal algorithms (abreviated as (¢, s)-optimal algorithms).

8%

102 P. RUZICKA

Algorithm compa-
rison Hasse diag-
ram

(A)

uzva0

(B)

(Cc)

v A\ 4
uzsi vz

(D)

SPACE-TIME TRADE-OFFS 103

Q Adversary respond Hasse
diagram

u—1 Figure 1

104 P. RUZICKA

This characterization lemma is a key result for obtaining lower bounds
on space and lower bounds on time for space-limited cases.

Lemma 2

Each time optimal algorithm solving the SEC (n) problem for n = 23, s=1,
performs only two kinds of comparisons:

(a) comparisons between roots of two B, fork =0, ...,s—1;
(b) comparisons between sons of Bi.

Proof

For each time optimal algorithm solving SEC(n) problem it is sufficient to
maintain the forest of two level binomial trees. Consider an adversary with
the following responding strategy (Figure 7):

If the adversary’s respond yields some non-tree structure, then it will certa-
inly contain a subgraph of the form

a b

Cc

Figure 2

and after computing maximum either a : c or b : ¢ will be a superfluous com-
parison, thus contradicting time-optimality condition. Hence, comparisons
of the type (B) and (C) are illegal in time optimal computation. We see that
this argument can be extended to comparisons of the type (D). A comparison
of the type (A) for u>v will also be superfluous by contradiction with time
optimality as well as comparisons of the type (D) for uss using the assump-
tion n = 25, Thus, we have constructed an adversary which forces each time
optimal algorithm solving the SEC (n) problem for n = 23, s=1, to perform
either comparisons of the type (A) for u = v and of type (D) for u = s or
yields the contradiction with time optimality condition. O

We turn to a proof of the asymptotical space-optimality of the previous
algorithm.

SPACE-TIME TRADE-OFFS 105

THEOREM 1
SEC, 5 iriogn(n) = 1/210og2 n+6(log nn).

Proof

1. The case n = 25 for some s=1. We do the proof by observing that each
(¢, s)-optimal algorithm for the SEC (n) problem has initially all elements
situated on the input tape and using permissible comparisons between roots
of two-level binomial trees B, (by Lemma 2) a space is necessary for saving a
copy of B, (i.e. k+1 memory cells) and further space for generating a copy
of By (i.e. S(By)). We obtain recursively equation

S(By+,) = k+1+S(B,) fork=23,...,s
S(B,) =1

Therefore, each time-optimal algorithm for SEC(n) problem requires (s?)
space.

2. The extention of the proof to the case n=2s, s=1, follows directly from
the observation that

SECat_y (2" ==SEC,_,.(n) holds for t =[logn7. O

3.4 (Memory transfer complexity of (¢, s)-optimal algorithms producing S}_,)
Consider now a (t, s)-optimal algorithm SECI for n = 25, s=1. The number
of comparisons between two level binomial trees is n—1. A straightforward
application of this fact gives a rough estimation O(n-log?n) for memory
transfers. It can be seen that by a finer analysis of the SEC1 algorithm a
logarithmic factor can be eliminated. We start with counting the number of
memory transfers done by SEC1 during binomial tree comparisons. Consider
a comparison between two roots of B, to give B,., (denoted as B, : B,).
This comparison needs k memory transfers in an array to compact By, ,. All
memory transfers made before B, : B, can be computed by the following
prescription:

All memory transfers made for the second copy of B, plus
all memory transfers made for the first copy of B, plus memory transfers
made during the B, : B,.

If we denote memory transfers made for B, (B, : B,) by M(B,) (M(B, : By)),
then
M(By+,) = 2-M(B))+k for k=2
M(B,) = M(B,: B)) = 2.
The solution is M(Byogn) = O(n-log n).
Further we count memory transfers made by the SEC1 in order to com-

pact elements in an array after each tree comparison. Again, the number of
memory transfers in proportional to the number of the resulting comparison

106 P. RUZICKA

structures and hence the entire number of memory transfers counted in this
step is O(n-log n). Thus, the overall number of memory transfers made by
the SECI1 algorithm is O(n - log n). This is the best we can do using implicit
data structure.

We show how to do better for a special case. For the SEC(n) problem
we give the following (c, s)-optimal algorithm which uses O(r) memory trans-
fers, but two indices for a working space. Thus, the following algorithm
uses a non-implicit data structure.

procedure SEC2 (n);
begin
comment the number n of the input elements is even and greater than two,
the working space is denoted by
A[l. .(log%n)/2+3 - (log n)/2];
p<1; 9«2
comment p(q) is a position of the old (a new) copy of B, in an array A;
repeat
read two elements from the input tape into memory cells
, Alp] and A[q];
1Y
comment ; is an index of the two-level binomial tree considered in the
tree comparison;
while there are two copies of B, in the working space

do
begin
i~i+1;
p~position of the old copy of B,_;;
compare the old copy of B;_, with the root in A[p]
with a new copy of B,_, with the root in A[q] such that
if A[p]<A[q]
then
if there is an old copy of B, in the working space
then
begin
exchange (A[p], A[q));
exchange (A[g—1], A[p]);
g-q—1
end
else
begin
Alp+1..p+i—1]< A[g+1..q+i—1];
exchange (A[p], A[q])
end
end;

rename all new copies for the old one
until the input tape is empty
end

SPACE-TIME TRADE-OFFS 107

We count the amount of memory transfers of the SEC2 algorithm. The then
part in the second if statement contains the constant number of transfers in
the memory and it is done once for each two level binomial tree comparison.
Consider n = 25 for some s=1. There are 0(n) binomial tree comparisons in
the while statement and therefore O(n) memory transfers are done in the
then part of the second if statement in the worst case. Memory transfers in
the else part of the second if statement are made once for each sequence of
binomial tree comparisons and the number of transfers in this step is pro-
portional to the number of elements in the underlying sequence which
further equals the number of binomial tree comparisons made by the entire
program. Hence there are O(n) memory transfers made by the SEC2 algo-
rithm.

THEOREM 2

The memory transfer complexity of the (¢, s)-optimal SEC(n) problem is
0(n).
We now turn our attention to the lower bound on the number of memory

transfers in the case of compact implementation (i.e. when continuous
memory cells are used) of data structures.

THEOREM 3

Each (¢, s)-optimal algorithm for the SEC(n) problem using a compact im-
plementation of each B, and a compact implementation of the entire working
space requires £2(n) memory transfers.

Proof

1. Let n = 2s for some s=l. Consider two copies of two-level binomial tree
B,, placed in a working space of any (f, s)-optimal algorithm and let the
first copy be placed in A[i,..i,+,] with a root in A[i,], I=p=<k+1, and
the second copy of B, be placed in A[j;..j,+,] with a root in A[j,],
l=g=k+1. Let the algorithm perform a comparison between these two
copies. We construct an adversary which responds for this comparison
according to the following scheme:

Alip]<Alj,] iff i,<j,.

To estimate the number of memory transfers forced by this adversary it is
sufficient to observe that for each sequence of binomial tree comparisons,
number of memory transfers proportional to the length of the underlying
sequence is necessary and that there are n— 1 binomial tree comparisons
for each (¢, s)-optimal algorithm solving SEC(n) problem.

2. Again, the case n=2% can be obtained from the fact that the number of
memory transfers for each (¢, s)-optimal algorithm solving SEC (2'°¢")
gives a lower bound on the number of memory transfers for a (¢, s)-optimal
algorithm for SEC(n) problem. O

108 P. RUZICKA

The following problem remains open: determine the lower bound on the
number of memory transfers for the (¢, s)-optimal SEC(n) problem for the
case in which two-level binomial trees need not to be necessarily compactly
implemented and in which the forest of all two level binomial trees in the wor-
king space must be implemented compactly only if the minimum space is
overloaded. Another unsolved problem is to prove whether there exists an
effective implementation of comparison-optimal algorithms “in-situ” using
only o(n) memory transfers. Note that Theorem 2 gives an 0(n) solution to
the “in-situ” problem and that Theorem 3 answers only a special case of the
lower bound problem for (¢, s)-optimal algorithms.

3.5 (Minimum space algorithms producing S{i"_,y» for 0<p<1/2) Now con-
sider a problem of producing the partial order S py» for O<p<1/2.

It is well-known that there is an algorithm using absolute minimum spa-
ce and making O(n-log n) binary comparisons. This algorithm is using a
heap data structure of pn+ 1 elements as a priority queue, throwing away
the smallest remaining element as each new element is read. The algorithm
based on this idea solves the problem in n-log n+0(n) binary comparisons
and O(n - log n) memory transfers.

To prove the lower bound on the number of comparisons required for de-
termining the partial order S{i,) » for 0<p-<1/2, an adversary argument was
used by Dobkin an Munro (78). They considered the data on the input tape
to be arranged in such a way that the first 2pn input elements would be the
2pn smallest elements of the entire set. If the algorithm eliminates:

a) the minimum of pn+ | elements in the working space, then after pn
eliminations, the pn smallest elements of the original set are sorted.

b) the maximum of pn+ 1 elements in the working space, then (1 —2p)n
elements are sorted.

Thus an adversary is constructed which forces any algorithm producing the

partial order S{{_p)n tosort min (p, (I —2p)) n elements. Furthermore, in this
adversary at least one memory transfer is forced to be done as each element
is eliminated. Hence we have

THEOREM 4

For any rational p€(0,1/2) there is an integer ¢,>0 such that for produ-

cing the partial order S{i"_, » in minimal space, sm]ultaneously c,-n-logn—
—0(n) binary comparisons and 2(n) memory transfers are necessary

There still remains the task to determine the exact number of memory

transfers done for producing S{i-) » , p€(0,1/2),'in minimal space. The prob-
lem is whether the adversary argument can be augmented also for (- log n)
memory transfer complexity.

3.6 (Minimum space algorithm producing S%2) A surprising result has been
obtained for the case of median partial order. Dobkin and Munro (78) gave
an algorithm MEDMINSP ACE for computing median partial order in mi-

SPACE-TIME TRADE-OFFS 109

nimal space. This algorithm is asymtotically optimal with respect to time
requirements and optimal with respect to space requirements.

procedure MEDMINSPACE (n);
begin
comment assume that n = 2¢4-1 for k=1,
1. read 2¥-14 1 input elements into the set U;
2. for i--0 downto k—3 do
find the n/2!+3 largest and smallest elements remaining in U and
place them in L,_,_; and S,_,_, respectively;
3. for i—-Oto k—1do
read 2/ elements to R; then discard the largest and smallest 2!
elements of L,UUS;UR and the rest transfer into R;
4. read the rest of the input elements;
find the median partial order of the remaining elements by a standard
linear time algorithm
end

To count the total number of memory transfers made by MEDMINSP ACE
algorithm, a standard selection algorithm of Paterson, Schonhage and Pip-
penger (76) is used which needs 3n+o(n) binary comparisons, 4n+ o(n)
memory transfers and n memory cells. We observe that the only steps of the
algorithm which require any transfers in the memory are steps 2, 3 and 4.
In step 2 each iteration makes linear number of memory transfers for the
elements actually considered. Since this number is effectively halved on each
iteration step, the total number of memory transfers is linear. In step 3 the
number of memory transfers made in the i-th iteration step is proportional

to the number of elements (2+2—1) considered, thus it is proportional to
logn
> M- (2!+2—1) for some constant M=>0. Since step 4 is linear due to the
i=0
result about the standard selection algorithm, the total cost is 0(n).

We have obtained

THEOREM 5

There is an algorithm producing the partial order S72 simultaneously in
minimal space, linear time and a linear number of memory transfers.

4. TIME-EFFICIENT ALGORITHMS IN LIMITED SPACE

In the previous section the analysis of two algorithms for the SEC(n)
problem has been presented. The SECMINSP ACE algorithm required mi-
nimum (constant) space, 2n—3 binary comparisons and 0(n) memery trans-
fers. The SEC2 algorithm required a minimum number n+[log n']—2 of
binary comparisons, 1/2 log? n+ @ (log n) space and 0(n) memory transfers.
In addition to this, space otimal and time optimal algorithms for SEC(n)
problem has been analyzed.

9 ANNALES-Sectio Computatorica—Tomus 11.

110 P. RUZICKA

This section is devoted to the solution of the following question: what is
the time complexity of the problem under some space restriction? Such a
kind of time characterization of the problem for each space constraint is cal-
led continuous space-time trade-off.

As a first result of this kind, a space-time trade off for the SEC(n) prob-
lem is presented. The essence of this result is exhibited by the following al-
gorithm in limited space. Let us have 4 memory cells A[l..4] at our dispo-
sal. The computation starts by reading two elements, comparing them and lo-
cating them into A[I..2]in ascending order. The computation then proceeds
in (n—2)/2 cycle by reading and comparing another two input elements,
comparing the greater input with A[1] and placing the greater one into A[1],
then comparing the candidates for the second element and placing the grea-
ter one into A[2]. The number of comparisons done by this algorithm is
143-(n—2)/2 = 3n/2-2.

We can generalize this idea to obtain an upper bound on a continuous
space-time trade-off result.

THEOREM 6

If M is an integer, M =4, then there is an algorithm producing S}_, using
M memory cells and making

n-(1+1/g(M))+V2- M+0(1)

binary comparisons where f(M) = L (V8 -M—7—1)/21 and
g(M) = 2/(M) | QUHMF3-L(M)=2- M)/2 |],

Proof

Consider the following algorithm:

procedure SECTRADEOFF (M, n),
begin
comment consider n = s-g(M)+ 2/ M;

1. Find an integer i€ (2, log n) such that i?/2+i/24+1=M<i%/2+3-i/2
+2;

2. Create a partial order of the type S? from 2! elements using memory
cells A[1], ..., A[M]in the same way as in the SEC1 algorithm and
place it into continuous memory cells A[l..i+ 1] with the center in
A[l];

repeat

i. Create a partial order of the type S? from g(M) elements using
A[i+2..M]memory cells in the same way as in SEC1 algorithm and
place it into memory cells A[i+2..2i+ 2] with the centerin A[i+2];

SPACE-TIME TRADE-OFFS 111

ii. if A[l1]<A[i+2] then
for j—1toi+1do
exchange (A[j], A[j+i+1]);
it A[i+1]< A[i+2] then

exchange A([i+1], A[i+2])
until the input tape is empty;
A[2]-MAXIMUM {A[2], ..., A[i+1]}
return (A[1], A[2]) .

end

The space used by this algorithm is M memory cells. To count the number of
comparisons we see that step 2 needs 2! — 1 comparisons, step i needs g(M)— 1
and step ii needs 2 comparisons. Steps i and ii are repetead s times, that me-
ans (n—27)/g(M) times. Thus, the total number is

n—24¢

M)
W‘(g(M)‘?' D+fM)—1 =

= n-(1+1/g(M)) — 27 Mjg(M)+ f(M)—2

20 _ | 4

and since
201 M g(M) <2

we obtain the result.

The case n=s-g(M)+2/™ for some s=1 is obtained from enlarging the set
of n elements by additional — - elements to obtain a “new” set on which
the SECTRADEOFF algorithm can be applied. “Superfluous” comparisons
with — « elements are not made and thus are not counted. O

We close by deriving lower bounds on the continuous space-time
trade-off.

THEOREM 7

Let M = s%/2+5s/2+1 for some s=2 and let n = k-2 for some k=1. Each
algorithm producing S} _, in space M requires at least

n+nf2s-14+s-0(1)

binary comparisons.

Proof

To prove this assertion, an adversary argument is used. We construct an
adversary which can be viewed as an algorithm working on an acyclic direc-
ted graph which has been defined in the section 3.2. The lower bound can be
achieved by computing the minimal number of edges entering terminal nodes
of paths longer than two, over all algorithms determining S._,. It can be ob-

o%

112 P. RUZICKA

served that there are terminal nodes with either one or two entering edges.
We compute

T = MINIMUM {p/qlp+q = n—2, q(p) is the number of terminal
A nodes with one (two) entering edge (s) for an algo-
rithm of determining S!_, in space s?/2+s5/2+1,

§=2,and n = k-2s for k=1}.

Following the idea of the proof of Lemma 2 we obtain

nj2s~14+s-3
n(l1—1/25"1)—s+2

wnich yields the assertion of the Theorem. O

4.2 (Space-time trade-off for S{i_), O0<p<n/2) Consider the problem of
P)

producing the partial order S{i-p)» for 0<p<1/2. Dobkin and Munro (78)
showed that only a small increase in space is necessary to make this problem
linear in the number of binary comparisons, as it is shown in the following
Theorem.

THEOREM 8

For each rational r=0 there is an algorithm producing the partial order

Sl py n for 0<p<1/2 which requires a linear number of binary comparisons,
a linear number of memory transfers and (p+r)n memory cells.

Proof

The upper bound is obtained by the following algorithm. Extra space is used
to eliminate r.n elements at each step of the computation using a standard

linear time selection algorithm to find Sy ryn . After - steps the computati-
r

on terminates with ¢-(p+r)-n binary comparisons made in one step for some
integer constant ¢=0. The linearity in the number of memory transfers is
obtained by the same argument as in Theorem 6. O

Theorem 8 and Theorem 4 can be combined to obtain a continuous spa-
ce-time trade-off.

THEOREM 9

Let f(n) = o(n). Then for each p:0<p~<1/2 there is an integer ¢,>0 such

that each algorithm producing the partial order S{i) in space p-n-+f(n)
requires at least ¢, -n-log (n/f(n)) —0(n) binary comparisons.

SPACE-TIME TRADE-OFFS 113

5. Conclusions

We investigated the space-time trade-off in producing partial orders
with center. We discussed the efficiency of time optimal algorithms in limited
space for these problems by determining their memory transfer complexity.
Among other results we have shown that the number of comparisons is a
suitable criterion for time complexity of producing partial orders with centre
even in limited space.

Other computational models have been considered relative to producing
partial orders in limited space. Multipass algorithms have been discussed by
Paterson and Munro (78) and Ruzicka (79). Here the trade-off between the
amount of internal space available and the number of passes over the input
tape required is studied. On-line algorithms have been studied by RuZicka
(81). At each step of computation these algorithms produce partial orders
with center for all processed elements.

REFERENCES

Dobkin, D. P., and J. I. Munro — Time and space bounds for selection problems. Lecture
Notes in Computer Science 62. Springer — Verlag, 192 —204, 1978.

Knuth D. E. — The art of computer programming. Vol. 3., Sorting and searching. Rea-
ding, Mass., Addison — Wesley, 1973

Munro, J. I., and M. S. Paterson — Selection and sorting with limited storage. J. of com-
puter and system sciences 7.3, 184 — 199, 1976.

Paterson, M. S. Schinhage, A., and Pippenger, N. — Finding the Median. 19-th Annual
Symposium on Foundations of computer science, Ann Arbor, Oct. 16 — 18, 253 — 258,
1978.

Ruzicka, P. — Space-optimal multipass algorithms for selection. Send for publication.

1979.

RuZitka, P. — Bounds for on-line selection, Kybernetika, Vol. 17,, No. 2., 147 — 157, 1981.

VVS, Dubravska 3

88531 Bratislava, Czechoslovakia

