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1. Introduction

In their paper [1] L. Géczan and A. F. Szasz introduced some hydrolo-
gical functions of new type to investigate the agronomical and technical
economy of water-supplies.

In many cases they had to determine a good approximating polynomial
for the hydrological functions f(x) under the following conditions:

(¢)  f'(x) is continuous (say) in [—1,1] (i.e., f€C).
(b)  One can measure the data f(1), f’(1) and
S (k=12,...,n —1=x<1,x 2 x; if k#J.).

As an easy calculation shows the uniquely determined polynomial G, (f, x)
of degree =n+1 satisfying the conditions
(a) and (b) has the form

Gy x) = 3 £0e) 1) ST gy 2R @D )y
k=1

(x,—1)? 1) Q1)
o Q)
(1.1) + f(1) 0 (x=1)
where
|mm=%m=%ﬁuﬂo<%¢w
(1.2) k=t

&m=mw=5§%gs

A very natural question (which was raised in [1], too) is how to choose the
nodesx, = x,, (k= 12,...,n;n = 1,2,...) to ensure that

(1.3) lim ||G,(f, x)— f(x)] = 0 whenever f'€eC.

k=1,...,n).

Here, as usual, ||g]| = max |g(x)| forgeC.
—1=x=1
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2. Results

2.1. It is easy to see that using the equidistant nodes
Xy, = — I+ k(n+ 1)t (which were applied in [1]),
the “Lebesgue constant” of the process (1.1)

dgef || n (x— 1)
=N =| 5 0l S

Q)] 2 Q) il

o o E 0 gay <))

very rapidly tends to infinity with n, from where we shall obtain, that for
the equidistant nodes (1.3) generally does not hold (see 3.6).
But considering the Jacobi nodes, i.e. the roots

(2.1) 1 <xGP<xGR < <xZ? <1 (a, 8> —1)

of the polynomial Sl (x) of degree n defined by

(12 (47 PG = o (] 10 =0 (1o

we can state as follows

THEOREM 2.1. [f 3<a = B+4=4.5, for the G, («, B) (f, x) = G, ([, X)
process defined on the nodes (2.1) the relation (1.3) is valid. More exactly, if
o(f’, t) denotes the modulus of continuity of f'(x)€C, then

O[mH]w[f',-l—] if 3<a=3.5,
n

n

(22)  NGa(a, BUS, X)) = FOOI =

0(71«—4-5)(0[]“, 1-] it %=3.5.
n

2.2. Here we state, the Theorem 2.1, in certain sense, is not far from the
best possible one. This can be formulated as follows.

THEOREM 2.2, [f « = $+4 and «a>4,5, then one can construct a func-
tion fi(x) such that fi(x)eC and

(2.3) ,{l—m 1G (o, BY(S 1) X) = f1 (X = ==
2.3. Similar results can be obtained for 3 = 1. We omit the details.

3. Proofs

3.1. We shall use the following relations (sometimes omitting the super-
fluous notations).

3.1) P P(x) = (= 1) P9~ x).
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if Xin = X" = cos 9", Xop =1, Xpipn= —1,
a, X 1
(3.2) IR =P~ (k=0.1,...,n)
n
moreover, if x;,) , is the nearest root to x (1 =j=n) then
(3.3) |x—x,m[~—kl— k=jk=0,1,2,...,n+1),
n?
(34) ‘P;Sa,ﬂ)(x[m)l Nk—:—S/’Q nz+2 (0< ?9k§7'[— 8),
(3.5) | PP ~ |x—x;| 877 ni2 |8 — 977 P v

uniformly for #€[0, = —¢].

At these formulae x = cos #, the ,,~” depends on «and g (see [2], (1.1),
(4.1.3), (8.9.2) and [3], [4]).

Denoting by Q,(x) = Q,(f, x) the polynomial of degree =n for which

sin 9 sin 9

(36) /000 - Q)| = 0<1>[—n~—] w[f’,

n

](i=0,1)

(see [5]) we can write by (1.1)

3.7) Go(f,X) = f(x) = Ga(f, %) = Qu(f, )+ Qu(f, X) —f(x) =
= G(f = Q)+ Qu(f, )= f(x) =

= S - elue £ rom M ufr,

X —

sin & ]
3.2. For the sum, using the formulae (3.1)—(3,6), we can write if x=0

i-~=0(1)[§ sin 4, [Smﬁk]l ’ P.(x) Hx_1]2+

n Prlx)(x —x,) [{x,—1

= 0(1) Z

n

[%]
| sind, w[ sims‘j] §7a=32 V2 ] 4 19,( [ﬁk]_
n

j—a—3/2 na.+2

19 a—1/2 p—1/2 2 j“n*“ [ ]
k - 3/2n°‘+2lk+j||k j| kin- 4+0(1) Z —w[ n]

19——:—1/2 n—l/2 j4 def
J

L L =§,+8,
k=p=32 pp+2  pt e
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where X2’ means that k#j.

n 13,5—a Lx—1.5
0L Seof k) Pkt

iz \n?) k4 jlk—j]|
def
—0(1)(n 22 o+nT2 3 ...+n‘122"] = O, +1,+1)).
>2z]

K <5 %§k§2j

Now

I, = 0(n=2) j»5- uw[ ]Z ka—15

so I, = 0(n'1)w[—] if «=3.
n

For I, we can write
I, = O(n—Z)jw[iJ S (k—j)t = 0['“”] [i]
n)k=j+1 n n
As I,, one can estimate as follows

Iy =0(n"2)j%5-= i w[—%—] kx=35
n

k=2j
which is o[l] w[l] if 3<a=3,5and 0(n*—45) w[i] if =>3,5.
n n n

Let us estimate S,. We have

35a n

S:= 0L Zw[—r—f—-]kﬁ= o5 [ ]k“ 13

which can be estimated by O[L] w[L] if 3<a=3,5 and by 0(n*—*?°).
n n

+ w[i] if «=>3,5.
n

3.3. Let now x<0. Then the corresponding expression with{ = n+1—j
are as follows

n —B—1/2 1,B+2,5
S¥ = 0(1)—12— z'w[iz] Rl i
U ) et k-]

n® g=

st =01 2 5 [ K fars

— o |— | k15,

2 nz—'ﬁ kzl [ n2 ]

i.e. S¥ and S¥ has the same form as S; and S,, respectively, if we consider
x = f+4. These estimations give Theorem 2.1.
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3.4. To prove Theorem 2.2, we apply the following statement, which is a
special case of [6], Theorem 3.1.

If for the sequence of linear operators T,(f,x) (f€C) and the functions
g.(x) (n = 1,2, ...) we have

(al) gn(x)€C,
(a2) T(gn 2,)=Cn 1y (2,) for certain {z,YC [ — 1,1] (definition of u, (z,));

(B*) (X) Z en; gn(X)€C for any {n}C{p,}

where {p,} is a certain fixed sequence of indices and O<e,=¢,+,=1;
(C*) Cs f"’n(zn)> Z é’n[ITnk(gn[; an)l + Z enil(g"1 an)|
i=k+1 i=k
(k=12,...; 0<C,<C; for arbitrary {n;}C{p,}; then with a suitable c; and
{sd{p.} with f,(x) = ¢ f(%)
(38) Tn(fl’ 2)—fi22)= e, wn (25) (n =8, 8,...).

(Here ¢, are fixed constants.)

3.5. Let a—4,5 = £=0,2, = (1+x,)/2 and

sin 4,
(3.9) 2n(Xkn) = ] n
V0 if k =n+1 or x>0,

o, [ sin & ] sign [(2,) if —1<x,=0,
n

where w,(f) is a modulus of continuity.

In the interval (x,,, x;) let g,(x) be the Hermite interpolatory polyno-
mial of degree =3 for which

8n(Xin) = €n(Xp+1,n) = 0 (k=0,1,...,m).
Let T, = G,. By (3.9) and (1.1)

Clgwz) = 3 S";f"w [S'"""‘]M

—l<x;=0

] = :un(zn)
By (3.1)—(3.5) we obtain, as at the estimation of S,

(3.10) “n(zn)“n—ti wl[ k ]k« 5= g [nl ]ns (n=12..)

k=1 n?
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i.e. we can suppose u,(2,)" < for a ,bad” w(f). Let us see now (B*). By

definition it is easy to verify, that w(gy, t)~w,(f), i.e. supposing > ep, < <,
i=1

we obtain for any {n,}C{p,}

(3.11) o(f,=c S enolgh,, 1) = 0(wy(D)),

i=1

which is more than (B*).
To prove (C*), we remark, that |g,(x)|= 1/n.So, if we choose the sequence
{p,} such that

Apy
Pr+1

1A
—~

k-

Il
N
N

we obtain (C¥*).
So by (3.8)—(3.11)

Gl 2)— i) =, w[n‘ ]ne (n =5y 802

which, with a suitable {e;}, is more than (2.3).

3.6. For the equidistant nodes one can use analogous argument, using
the fact that for certain {k,} |k, n(X)|>(1,5)"2 (n=n,) (see e.g. [7] Part 3,
Chapter 2, § 3). We omit the furthér details.
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