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In an earlier paper of ours [2] we tried to give a unitary theory for a
certain class of iteration methods, used for solving nonlinear operator equati-
ons defined in Banach spaces. In the present work we resume this problem in
the conditions of a B,-space, i.e. linear semiordered complete space, normed
in a general sense or in the L.V. Kantorovi¢’s sense [3].

For this purpose we consider the equation

(D P(x) = 0,

where P(x) is a non-linear operator defined in a domain D of the B,-space X
with values also in X. It is well-known that in an isolated manner certain
iteration methods have already been treated in semiordered space [1, 4, 5].
We had shown in our above mentioned work that in the conditions of Banach
spaces the order of convergence has a direct influence on the structure of the
iteration methods. The order of convergence permits to generate and classify
as well, certain well-known iteration methods and also enables the common
treatment of these methods at the same time giving common conditions for
convergence. The situation is analogous in the conditions of B,-spaces.

For this purpose we introduce a notion of order of convergence.

Definition. Let x* be a solution of the operator equation (1). We shall
say that the lower iteration method (3), (see below) has the order of conver-
gence k, if

(i) the generalized norm |x* —x, | tends in the Kantorovi¢’s sense to the
null-element, when n— o;

(ii) the derivatives of the iteration-operator ¥(x) satisfy the equalities

Y (x*) = 0, P7(x*) = 0,, ..., PE=D (x*) = 0,_,, PO (x*)#0,,
where 0, (i = 1, 2, ..., k) are i-linear null-operators.

We consider now the following iteration operator, analogous to that
given in [2]:

) P(x) = x=[P'(X) +4(x) P()] * P(x)+2(x) P*(X),
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where ¥(x) is a nonlinear operator with domain DC X and range in X; mo-
reover, 4,(x) and A,(x) represent bilinear operators for fixed x, defined on the
domain DX D C X X X, having values also in X.

Using the iteration operator ¥(x), we can construct the following gene-
ral iteration method

(3) Xp+1 = ¥(Xp)

and we shall apply it for solving equation (1).

Certain methods, such as the well-known Newton-Kantorovi¢’s method,
the Cebysev’s method and the method of tangent hyperbolas can be genera-
ted in a similar way as in the conditions of Banach space [2].

Thus, if we choose

(%) = Ay(x)=0,,

where 0, is the null bilinear operator and besides this we impose the conditi-
on

P/(x*¥) = 0,

0, being the null linear operator, then in this case the general iteration meth-
od (3) is reduced precisely to the Newton — Kantorovi¢’s method, which is
related to the generalized Caplygin’s method [1].

It is worth mentioning here that if A,(x) # 0, and A,(x) # 0,, then we
obtain a class of transfinite number of iteration methods of second order.

In the case, in which we put ¥ (x*) = 0, and choosing A,(x) = 0,, we
obtain the method of tangent hyperbolas

-1
Xnt1 = Xp— P’(xn)—%P”(xn)PnP(xn) P(xn)!

r, =[P(x)]".

If we choose 4,(x) = 0, and impose also ¥ (x*) = 0,, then we find the
method of Cebysev [5],

Xpey = Xy =T, P(n.)—%r,, P )Tt T = [P/(x)] 2

Of course, besides these two methods there exists a class of a transfinite num-
ber of iteration methods of third order. In this case one of the operators A,(x)
and 2A,4(x) is arbitary.

We mention that the iteration operator can be chosen in another
form

2) P(x)=x—[P'(x) + u(x) P(x)] 72 (P(x) + Ay(x) P(x)).
If we now impose ¥”’(x*) = 0,, i.e.

f’”(x*) Ax, Ax, = O,
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for any 4x,, 4x,€D, then we get a relation for the bilinerar operators u(x)
and A,(x):

P (x*)Ax, Axy+ 2u(x*) [P’(x*) Ax, 4%, =
= 24,(x*) [P'(x*) 4x,] [P'(x*) 4x, ).

Thus we obtain a new class of iteration methods of third order having
the form

3) Xpr1 = P(X,).
Putting in relation (3")

w(x®) Ax, Ax, = —P”(x*) [I'(x*) 4x,] Ax,
for any Ax,, Ax,€D, then it follows

Ay (x*) dxy Axy = ——:12* P7(c*) [T(x*) A0e)] [T(x*) Ax,]

where I'(x*) = [P'(x*)]~1.

If we admit

Ay(x) Ax, Ax, = —% P"(x) [D(x) 4x,][T(x) 4x,]

for any x€D, then we recover L. K. Vohandu’s method [7]. The class of ite-
ration method (3") contains also U. Kaasik’s method

Xpt1 = Xp— (I + o R) ™[I, P(xp) +(2+ DR, T P(x,) ],

where [ is the identity operator and

R, = %rn P(x) T P(x,), Ty = [P(x)],

« being a real parameter. For = —1,0,—2 we get the generalized method of
tangent hyperbolas, the CebySev’s method and the method of L.K. Véhandu.
We notice that the methods of Kaasik and Vohandu have not been tre-
ated in the conditions of semiordered spaces.
At last we mention that the general form of the iteration operator can
be given as follows:

P (x) = x—{P()+ m(x) PE)+ - - - + i) [P 1} POO) +
+AX) [PxP . . +4;01(X) [PV,
where the multilinear operators

WO A, r=1,2...,08=1,2...,j;i+j=k=1)
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can be determined by means of the conditions
PPOX*) Ax, ... 4x, =0, (p=2,3,...,k-1)

and the operators g;4,(x), 4;+,(x) are arbitrary; these can be chosen in a
convenient manner for the necessities of the numerical calculations.

In this way we obtain a class of iteration methods of order k, analogously
as in [2]. 5

The general expression of the iteration operator ¥(x) can be considered
in the following form

P(x) = x—{P"()+ m(X) PO+ - . - + i s(¥) [PO)] 1)1
AP+ 45(x) [P+« +444(x) [PV}

Now we are going to establish some common conditions of the conver-

gence of order k for the general iteration method (3). For this purpose we

shall use the generalized Taylor’s formula, considered in X for the iteration
operator

4) Y(x,) = P(x*)+ ¥ (x*)(x, —x*)+ — 5 ?”’(x*)(x —x*¥)2 4+ .

Xn

1
+—— | PWO(X) (x, —X)k"1dx
i | PO E
x*
where x = x*+#(x,—x*), O=t=1).
We assume the following conditions:

1°. Let P(x) be defined on the segment D, given by the elements x satis-
fying the inequalities x,=<x=X,, where X,, X, are given initial approximative

solutions. There exist certain additive and homogeneous operators A4 and I’
with positive inverses A ~1, I'"1, such that

a) AAx=P(x+Ax)—P(x)=I'4x

for any positive Ax and for any x, x + 4Ax€[x,, X, |;
b) I'"'P(x) is (0)-monotone and (o)-continuous;

¢) P(x) <=0 <P(x,)
for the initial approximate solutions x,, X,, where x,<X,;

2°. The iteration operator W(x) defined by the equality (2) is uniformly
differentiable of order k;

3°. The relations
Y'(x*) =0, P’(x*) =0, ..., P*-D(x*) = 0,_, and ‘[’}’;{>0

are satisfied for kK = 2v+1, » being a natural number.
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Theorem. Let us assume that the conditions 1°.—3°. are fulfilled. Then
the operator equation P(x) = @ possesses a single solution x* and the gene-
ral process x,+, = ¥(x,) is convergent of order k. The monotone decreasing
upper approximations {x,} resp. the monotone increasing lower approxi-
nations {x,}, defined by the algorithms

in‘*l = !{I(}n) resp. X,+; = T(En)
converge to the solution x*,

x* = (Bk)—llm X, = (B,)-limx,,

N+ oo

where x,, resp. X, satisfy the following inequalities
) Xo<Xi<...<Xp_1<X,<X¥<X,<X,_;<...X; <X,

Proof. First of all we observe that the condition 1°. ensure the exis-
tence and the unicity for the solution of the equation (1) as well [6]. Further,
based on the condition 2° the generalized Taylor’s formula (4) can be construc-
ted, which is important in the establishment of the inequalities (5) [1].

In fact the relations (4) and P%(x)>0, and X,—x*=6O imply
X, —x*=>0. By induction we get x, —x*= 0 for all natural n.

Using the equality

Xn

_ | _ -
Xpyq = X¥+—— | ¥W(X)(X,—X)k"1dx
o o [ PO

which results also from (4), we get

X —xX. = _.—l N (X)X _¥)—1 4%
Xp+1—Xn (k—l)' L4 (x)(xn—l X) dx +
I xn(l()"'_"k——l v (k) —_y)k—1 _
t k— 1)1 /'1’ (X)(x, — X)*~tdx = /—l)' /[EE’ (X)(X,, — %)
—POR)(X, - —X)F '] dx — _ / _uf<k>(>z)(5cn_l — X1 dx=0.
(k—=1)!

Similarly we obtain x* —x,=0 and x,+,—x,=0.

We mention that we can establish a similar theorem also for k = 2» by
imposing the condition ¥®)(x) <0, instead of ¥®(x)<O0,. It can also be men-

tioned here that the theorem proved above is true for the case of l:f’(x).
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