AN ABSTRACT GRAPH WALK ALGORITHM

L. VARGA
(Received 12 July, 1979)

1. Introduction

In the last decade lots of work have been done in the field of the machine
independent definitions of programming languages. One of the most remar-
kable results is the Vienna Definition Language (VDL). The first descrip-
tion of the Vienna Definition Language was published in [1]. In [2] VDL
was used as a definition tool of the semantics of PL/I. [3] gives an informal
explanation of the basic ideas of VDL. Lee [4] proposed some minor impro-
vements in order to make the language suitable for the description of algo-
rithms other than abstract interpreters. [5] gives a systematic introduction
into VDL.

Though the VDL was originally constructed for the definition of the
abstract syntax and semantics of programming languages, it has proven to
be an excellent design language for top-down program development. It per-
mits concentrating rather on the logical solutions of problems, than the form
and constraints within that the solution must be stated. The language helps
the programmers to think in terms of a hierarchy of routines and expresses
structured logic.

Hoare’s deductive system, using axioms, inference rules and assertions,
can be used to prove correctness of structured programs. (The axioms and
the rules of consequence appear in the Appendix.)

Therefore, the Vienna Definition Language with Hoare’s deductive
system can be used for verified design of programs. In this paper, this is app-
lied for defining a general graph walk algorithm, where the walk strategy
and the operations over the nodes are not specified. An abstract algorithm
is given in this way, from that concrete graph walks can be deduced.

As example, the abstract algorithm is used for the specification of a
linkage editor model.

2. The VDL-graph
Let
is-node-set = ({(s: is-node) [is-select(s)}),
is-node = ((s-value: is-pred), (s-desc:is-select-list)),

64 L. VARGA

s-value s—desc

elem (i)

Figure 2.1. Figure of a node set

AN ABSTRACT GRAPH WALK ALGORITHM 65

root(1) root{2)

next(1) next(2) next (1) next (2)

next (1)

®

Figure 2.2. VDL-graph

5 ANNALES-Sectio Computatorica—Tomus I1.

66 L. VARGA

where “is-select” and “is-pred” represent arbitrary predicates. Such an
object is shown by Figure 2.1., where

a€{x|is-pred(x)}
and
s, s;€{s’|is-select(s")}.

Let

is-node-set (f) = T.
Definition 2.1. Let tef if

(3s, is-select (s) (s(f) = 1).
Definition 2.2. Let te f, ne¢ f. The node n refers to t if and only if
(3i, 1=s= length s-desc(n)) (elem(i) (s-desc(n)) (f) =).

Notationally we shall use the form

n—t.

Definition 2.3. The node ¢, is reachable from node t,, or there exists a reference
path from ¢, to ¢, if and only if

R AR (tef,i=1,2,...,k).
We shall use the following notation for the reference path
L %1l
Definition 2.4. The set of VDL-graph is
{glis-pred-graph(g)},
where
is-pred-graph = is-node-set

and there exists a non-empty subset M(g) of the nodes of g distinguished
with the property that any node neg and n¢ M(g) can be reached from at le-
ast one element of M(g).

Definition 2.5. If me M(g) then m is called a directly reachable node.
It follows that each node of a VDL-graph can be reached from at least
one directly reachable node.

Definition 2.6. Let root (i) be the function, for which

root (i) = s, i=12...,m

M(g) = {51(8), sx(8); - - -» Sm(@)}

AN ABSTRACT GRAPH WALK ALGORITHM 67

and
value (n) = s-value (n),
next (i) (n) = elem (i) (s-desc (1)) (g), 1 =i=Ilength (s-desc(n) (g)).
These functions can be used as selectors, for example

value - next (2) - next(1) - root(3)(g) =

= value [next(z)(next(l)(root(3)(g)))) :
Definition 2.7. A terminal node is a node n such that

(Vi, 1=i=length (s-desc (n))) (next (i) (n) = Q),
where £ is the null object.

Example 2.7. Using the functions defined above, the structure of a VDL-
graph can be visualised by a graph. The VDL-graph is denoted by the fol-
lowing relations

g = ((root (1):ny), (root(2): nmy), (S3: 1), (S4:My), (S5 :15)),
n, = ({s-value: a), (s-desc : {s;, 5,))),

n, = ({s-value :b), (s-desc: {(s,))),

ny = ((s-value:c), (s-desc: (}))),

ny = ((s-value:d), {s-desc:s;, $,))),

((s-value : e}, {s-desc : {))),

where M(g) = {n,, n,} is shown on Figure 2.1 The nodes on the Figure 2.1
are circles and the values yielded by the nodes of the VDL-graph are in the
circles. They can be selected by the function “value”. For example

value (root(1) (g)) = a.

The relationships between the nodes are represented by arrows and the
arrows are named by function next (i).

The figure of a VDL-graph visualizes its structure in this way, but
the formula of a VDL-graph does not reflect it directly. However it isnot
difficult to construct a formula that also satisfies this requirement. But this
problem is not dealt here.

In Definition 2.5. the selection operations are defined on the VDL-graph.
Construction operations can also be defined on it, but it is intended to deal
with statical VDL-graph only, hence construction operations are not defined.

ny

Il

3. The graph walk algorithm and its verification

The graph walk is a fundamental operation. Most of the selection and
construction operations can be established on it.

5'f

68 L. VARGA

A graph walk can be carried out according to different strategies. In a
graph walk algorithm each node of the VDL-graph is processed one after
the other. The walk strategy determines the order of the nodes to be proces-
sed. In the following, we give a general graph walk algorithm, where the
walk strategy and the operations over the nodes are not specified. In this
way an abstraction of the graph walk algorithms is given from which concre-
te graph walks can be deduced by the specification of the walk strategy and
the operation over the nodes.

In this paper the VDL with the Hoare’s deductive system is used for
the verified design of a graph walk algorithm. At verification the following
notation is used:;

{R}
P
{Q}

where R and Q are assertions about the state of the abstract machine and
P is a VDL-program. This may be interpreted as follows: If Q is true before
execution of a VDL-program P, then R is true after execution of P provided
P terminates.

The correctness proof of VDL-programs can be carried out in similar
way to correctness proofs of parallel programs [7]. The extension of Hoare’s
method to VDL-programs can be found in [8].

Let the set of the states of the abstract machine be:

(&lis-state(£))
where
is-state = ((s-input:is-pred-graph),
(s-table:is-table),
(s-control : is-control))
is-table = is-value-set
and is-value = {Y, N}.
Let the initial state &, of the machine be characterized by
5, = we(¢{s-input: g), (s-table: 1),
(s-control : walk (g; next-selector, proc)))
where
is-pred-graph (g) =T
to = ({(s: N)s(g) € M(g)})

and let next-selector be a function and proc a macro. They are formal para-

meters of the algorithm. The function next-selector specifies the walk stra-
tegy and macro proc determines the operation over the nodes.

AN ABSTRACT GRAPH WALK ALGORITHM 69

Definition 3.7. The function next-selector is a function over the set

{t|is-table (t)}
and the range of the function is

is-selector U {2},
so that if

(3seis-selector) (s(t) = N)
then next-selector(f) is a selector s so that
s(t) =N
else
next-selector(f) =Q.

Informally, the function next-selector(t) furnishes one of the selectors of the
table ¢ as

sty =N

if such an s exists and yields the object © otherwise. If the function next-
selector is applied to a table ¢ several times the result is the same.

Definition 3.2. Let proc be a function over the set
{n|is-node(n)}
with range {T, F} so that
proc(n) =T
if and only if the macro m(s-value(n)) has been executed:
{proc(m)}
proc (s-value(n))
{is-node(n)}.

Theorem 3.1. Let £, be the object given above, then the following algo-
rithm executes the instruction

proc (value(n))

exactly once for each neg:
Level 1:

walk (g; next-selector, proc) =

next-selector (s-table(¢)) = 2-null

70 L. VARGA

T —~walk (g; next-selector, proc);

process-node (1, s; proc);

n :next-node (s, g);
s :next-name (;next-selector)
next-name (;next-selector) =
PASS: next-selector (s-table(&))
next-node (s, g) =
PASS: s(g)
Level 2:

process-node (n, §; proc) =

proc (s-value (1)),
process-desc (s-desc(r), s)
Level 3:
process-desc (w, s) =
length (w) = O—process-name (s)
T --process-desc (tail(w), s);
set (head(w))
process-name (s) =
s-table: u(s-table (&); (s:Y))
Level 4:
set (s) =
s(s-table (&)) = 2~link (s)
T null
link (s) =
s-table: u (s-table (&); (s:N)).

Proof. The partial correctness of the program will be proved accor-
ding to the following specification:

AN ABSTRACT GRAPH WALK ALGORITHM 71

Let the initial state &, be specified by the predicate
P(&o) 1 ('S, afs, E) = Q2) (s, &) = N
A S(8)€M(g)) A (¥, s(8)€ M(g))(«(s, &) = N) Ais-pred-graph(g)
where
(s, &) = s(s-table (£&));
and let the input-output predicate be the following:
(€0, £): (75, 5(g) # Q) (proc (s(g)) Ais-pred graph (g) Ag = s-input (&,)),

so that the instruction proc (s-value(n)) is executed exactly once for each

neg.
The proof is done as follows. The program is divided into levels. At the
first step the correctness is proved for the first level making use of lemmas
and theorems not provable on that level. The correctness of the latters is
assumed. At the next step the correctness of the assumptions is shown in a
similar way. Continueing this process, the rest of the assumptions is verified
by proving lemmas.

Level 1.

To show the partial correctness of the algorithm, first of all we have to
specify the assertion, that must be invariant at Level 1:

Qu(8) : Ry(§) A Ry(E) A Ry(&) A R4(8)
where
R(&): (Vs afs, &)= Q)(s(@) =R A s, §)) = YV afs, £) = N);
Ry(§):(V's, a(s, &) = Y)(proc (s(2)));
Ry(&) Z(‘v’S, proc(s(g)))(a(s, £ =Y)
Ry(®):(VS, () %<2 A s, &) = Q)
((3s)(ats, &) = NAs(g)~*5)))-
Lemma 3.1.1.
P(£0) D Qu(&)-
Proof. It is obvious that
(&) DRy(&o) A Ry(&) N\ R(&o)-
But
(Vs, 5(@)e M(@))(«(s, &) = N)D
(V8 S(@=RN s, &) = Q)(s ()¢ M(g))

72 L. VARGA

and hence it is also true, that

(VS s'(@)= 2N a(s, &) = Q)((3 8)(s(g)€ M(g) As(g)—~ *5'(g)).
Lemma 3.1.2.
{Qi(E) A = P(E) A afs, §) = N}
s: next-name (;next-selector),
{Qu(&) A= P(8)}

where
P(&) : next-selextor (s-table(£)) = Q

Proof. From Definition 3.1 we have
Qu(&) A ~P(§)D «(next-selector (s-table (£)), £) = N
and therefore the proof can be given by the rule of assignment.
Lemma 3.1.3.
{QUEOA =P A als, &) = NAn = s(g)}
n :next-node (s, 2)
{QuE) A = P(&) A (s, &) = N}.

Proof. It follows from the definition of macro n: next-node (s, g) im-
mediately.
Now, suppose we have already the proof.

Assumption 3.1.1.
{Qu(&)}

process-node (n, s; ;Loc)
{QUE A =P(E) A als, &) = NAn = s(g)}-
Then from the rule of composition it is that

{Qu(D}

process-node (7, s; proc),
n : next-node (s, g);
s: next-name (;next-selector)

{Q.(&) A = P(%)},

hence the rule of iteration shows the partial correctness of the algorithm
at Level I.

AN ABSTRACT GRAPH WALK ALGORITHM 73

Level 2.
The assertion
Qa8 9): Ri(8) A Ry (&, 8) A R3y(S, 8) ARy(8)
Where

Ruu(6,9):(v8, ' =5 A s, §) = Y)(proc(s'(g)))
Ry(§, 8): (V8,855 A proc(s'(g)) («(s', §) = V)

must be invariant at Level 2.
From Definition 3.2 we have

(Qu&, 5) A proc(m) A n = s(g) An=)
proc (s-value (n))
QR 9)An =s(@)An=02). ()
Assumption 3.1.2.
{6)An =s@)Nals, &) = Y}
process-desc (s-desc(n), s)
{Qu(& 8)An = s(g) A afs, §) = N} (if)

and the proofs (i), (ii) are interference-free.
If Assumption 3.1.2 is correct, then using the rule of parallelism we
have

{Qx(8, 5) A1 = s(g) Aproc (M) A «(s, &) = Y}
proc (s-value (n)),
process-desc (s-desc(n), s)
{Qu(& s) A1 = 8(g) A (s, §) = N}.
But
Q& s) An = s(g) Aproc(n) A a(s,) = YD Q,(8)

and

QuE) A afs, &) = NDQy(§ 9)
that shows the correctness of Assumption 3.1.1.

Level 3.
In order to show the correctness of Assumption 3.1.2 let

Qs(&, 8) :R\(E) ARy (S, 8) ARy (&, 8) ARy(S, 5)

74 L. VARGA

where
Ru(&,8): (v, 8(g) = QA (s, &) = QAS(g)— [~ *5(g))
((35)(a6, &) = N5 A ()~ %5(2)) -
Let us define the following assertions
Rix(8, s 8%):(V 8, 8(g) # QA (', §) = QAS(g)~5*(g)~*5'(2))
((35,5 = 5)(«(5, &) = NAS(®)~ *5°(2)))»
Ri(% 9):(V8, (8) # QA (s, &) = QAs(g)~*5(g))
((35,5 = s)(«(5, &) = NAS(Q)~ %5(9)))-
Lemma 3.1.4.
{Qu(&,) AR(E, 5) Aufs, §) = V)
process-name (S)
{Qs() ARg(&,) A as, &) = N} (iii)

and the proofs (i) (iii) are interference-free.

Proof. This is concluded from the definition of the macros proc and
process-name immediately.

Assumption 3.1.3.
{Qas;)N als, &) = NARg(E, s, %)
set (s*)
{Qa(&,) A als, &) = N As(g)—~s*(g)} (iv)

and the proofs (i), (iv) are interference-free.
It is obvious now, that

Q&) A afs, §) = NA(V 5%, 5(g) ~5*(@)Ruslé) 8, $))D
Qi) A (s, &) = N ARy(a,).
Hence using the rule of iteration it is easy to deduce the following proof:
{Q(&) AR (E) A (s, §) = Y}
process-desc (w, s)

{Qa(&, $) N ofs, &) = NAw = s-desc (s(g))}-
But
QuS,) ARy,)N afs, §) = YO Q& 5)Aa(E,5) = Y
that shows the correctness of Assumption 3.1.2.

AN ABSTRACT GRAPH WALK ALGORITHM 75

Level 4.
Lemma 3.1.5.
QS5) A s, §) = NARy(E, s, s%)}
link (s*) (v)
{Q:G)N als, &) = NAS(g)~ % s*(g) A 5™, €) = 2}
and the proofs (i), (v) are interference-free.

Proof. This is a simple assignment statement. From the rule of assign-
ment the correctness of Lemma 3.1.5 follows.
The macro set (s*) is a conditional statement. Using the axiom of the

null statement and the conditional rule, the correctness of Assumption 3.1.3

can be shown. The correctness of the assumptions used in the proof of the
partial correctness of the walk algorithm is verified until now.

But the termination of the algorithm is still left. The set of the nodes
of the graph is finite. Let N be the number of the nodes and let v(&) be the
number of selectors for which

afs, §) = Y.
Then
Ui(&): N—v(&)
is an integer function and
R\(§)DU,(%)=0.
Assumption 3.1.4.
{Ri(E) A Uy(§)=C}

process-node (n, s; proc)

{R(E)AU(8) = C}
and the macro process-node terminates.

It is obvious that the macros next-name and next-node do not alter

the values of the function U,(&), hence the rule of termination shows that the
walk algorithm also terminates.
To prove the correctness of Assumption 3.1.4 let

U,(w) :length (w)
where w = s-desc (n) and is-node (n) = T. Now
U,(w)=0

and U, (tail (w))<U,(w) if length (w)=1. Hence it is seen that the macro
process-desc (w, s) terminates. But the macros proc and process-desc have

76 L. VARGA

no common variables, therefore their parallel execution does not create an
interference problem, that shows the correctness of Assumption 3.1.4.

In the following two special cases of the graph walk algorithm will be
given by specifying the predicate is-pred-graph and the macro proc. These

algorithms have their practical importance in system programming.

4. An abstract linkage editor

Consider a programming system, where the segments refer to each ot-
her only by the segment name. Then the graph walk algorithm can be applied
for defining the linkage editor of this system as follows:

Let
is-state = ((s-input:is-r/b-program),
(s-table:is-value-set),
(s-control:is-control}),
where
is-r/b-program = is-segment-code-graph
where
is-select = is-segment-name.
In detail:

is-r[b-program = ({(s-is-node})|is-segment-name (s)})
is-node = ((s-value:is-segment-code),
(s-desc:is-segment-name-list)).
Definition 4.1. Let
editor (f)
be the macro instruction that processes a segment-code as needed for linking.
The actual operation is not relevant here.

Then the abstract linkage editor can be characterized by the machine,
where the initial state £, is the following

&, = po(¢s-input:p), (s-table: f,),
(s-control: walk (p; next-selector, editor)))

and specifically is-r/b-program(p) = T.
5. Appendix

Axioms and rules of consequence

We introduce the following notation
{R}
P
{Q}

AN ABSTRACT GRAPH WALK ALGORITHM 77

where R and Q are assertions about variables and P is a VDL program. This
may be interpreted as follows: if Q is true before execution of a VDL program
P, then R is true after execution of P, provided that P terminates.

Axiom of assignment 5.1

{P(a; &)}
a:u_t(xl, e Xy)
(P(egs 11 (& (5¢,2€1), .., (5,2 €0))
where
ut (xg, ..., %) =
PASS :ey(xy, ..., X, §)
S—cyie(Xxy, .., X £)
S—Chiep(Xy, X5)
and
e =e(xy ..,x38) 1=0,1,...,n.
Axiom of null statement 5.2
{P}
null
{P}.

Defining inference rules in addition to axioms, Hoare [6] describes a
deductive system for proving properties of sequential programs. This rules
may be expressed formally:

X

Y

which means, if X is true, then Y is also true.
In the case of VDL-programs the following inference rules are accepted as
axioms.

Rule of consequence 5.1

{0}
ut and pDp, and ¢, D¢

Py

{a}
ut
{r}

78 L. VARGA

Rule of assignment 5.2

On the basis of the axiom of assignment, by means of the consequence
rule we have

P(x;, -, x5 §)DQegs p(&5 (s—¢r:€p), - -, (S—cq1€p))
{Q(a; &)}

azut (X, ...,%)
{P(xy, ..., X &)}

where
u_t» X, . 0x) =
PASS 1 eg(xy, - - .5 X5 &)
S—c¢rreXy, .- X5 8)
S—C,iep(Xy, - X5 8)
and

G =¢e(x,...,x38 i=01...,n.

Conditional rule 5.3

{a.} {92} {g,}
ut, and ut, and ut,
{pApy} (PA =Py A Ps) {PA 2 (PLAPA - - - APy}
{0:VgV ...V}
ut
{r}
where
u_t_ =
pi—ut,
py—~ut,

T -ut

n*

AN ABSTRACT GRAPH WALK ALGORITHM

79

Rule of iteration 5.4

If
ut(x, ..., x,) =
Pi(Xy - Xy E)ut (g, .0, 2,)
uty (@, .- ., @)
7 —null
where
a; = axy, ..., X, &) i=12.. .,k
2j = 2)(xy, .., X5 &) j=12,...,n
and
Py X EYADP(X, Xy E)D(Xy, L X, b, L, Gy),
and
{r(xy, .. . X)) AR(ay, . . ., a,)}
uty(ay, ..., a)
{gCxp - - Xy Gy, -, @)}
furthermore
r(Xy, .o X)DP@y -+ 2525 &)
then
{PWy, - s W3)N = py(Wys - - W5 E)AQ)
ut (xg, ..., X)
{pCxy, - X5 E)}
where
Q:R(ay, .

G G)ARMy, BN - AR(C -

e Cy)
and the transformation of the argument of ut is

Xy o X))@ -2~V B V) (W, W)
and the arguments of ut, during the iteration are

@, ..., a), (b,

/7% R (R

80 L. VARGA

For example, if
ut (f) =
length (f) # 0—ut (tail (¢));
ut, (head (1)
T —null
and
p(?) - is-pred-list(?)
t={(ab,...,c0
then
{p(w) A length (w) = 0 AR(@)AR(b) A ... AR(c)}
ut ()

{p®}
Rule of composition 5.5

{a} {r}

Utz and Utl

{9
{r}

ut
{r}
where
uty;
uty
5.1 Definition. Given a control tree t, with the statement

{9}
t

{p}

and the value returning instruction ut with the precondition pre ut. If the
execution of ut after t does not alter the validity of g, that is

Ol

ut

{pre(ut) A g}

AN ABSTRACT GRAPH WALK ALGORITHM 81

and the execution of ut before any u within t does not alter the validity of
pre (u), that is
- {pre(u)}
ut
{pre (ut) A pre (u)}
then we say that ut does not interfere with

{9
t

{r}
Definition 5.2. Given the statement
{0} {4} {4.}

ut, Uy, ut, 0)

{p.} {p:} {P}

Let u; be a value returning instruction within ut,. Ifforalli,i = 1,2,..., n
u; does not interfere with

{g-}
ut, j=1L2..,nmji
{P/}~
then we say that the statements (i) are interference free.
Rule of parallelism 5.6
{ql} {qn}
ut, and ut, and they are interference free
{p:} {pn}
{OLAGQA - NG
ut
{PrADPsA .- APp}
where
ut =
ut,,
uty
ut,.

6 ANNALES-Sectio Computator ca— Tomus 11,

82 L, VARGA

Termination
Definition 5.3. Let
ut (xy, ..., Xp; §) =
Py(Xw -0 Xy E)~ut (2, -1, 2); (if)
uty (@, ..., a)
T~ null
and let u be a value returning instruction. Let u(x,, . . ., x,; &) be an integer

function which is used at the verification of the termination of lt If for all
X3, ..., X,, & we have

{ulxy, ..., x,; E)=uxy, ..., x,; &)}
u
{pre W) A u(x;, . ..,x,; §)=0}
then we say that the execution of u does not interfere with the termination
of ut.
Rule of termination 5.7
Let be given the loop ut (x;, . .., x,; &) of the form (ii) and let

pre (ut(xy, ..., X)) : p(Xy, .. ., X5 &)
be its precondition. Let
uxy, ..., x,; &)
be an integer function. If
1. p(xy, .. X5 E)DU(Xy, ..., X5 §)=0
2. p(xp oo s Xy YA DUXys o X E)DU(X, L, X, §)=0

3. {u(xy, .. Xy E)=U(xy, .., X5 E))
ut, (@, .., @)
{uxy, - - -, xp; §) =0}
4 u@, ..., 2,) <u(xy, .. X, 8)
5. there is no such a value returning instruction in parallel execution
of ut which interferes with the termination of ut then the execution

of ut terminates.
For example, if
ut(t) =
length () = 0—-ut (tail ());
ut, (head (t))
T-null

AN ABSTRACT GRAPH WALK ALGORITHM 83

and
pre (ut(t)) : is-pred-list(t),
u(ty = length ()
then
is-pred-list () Du(t)=0
is-pred-list (f) A length(f) = 0D u(f)=0

u(t) does not depend on &, therefore the execution of ut, (head (f))
does not alter its value

u(tail(t)) <u(f)

u(f) contains only a local variable, therefore the execution of any
value returning instruction does not alter its value

o W

hence the loop ut terminates.

6. Conclusion

We used the VDL-language both as a language and as a program deve-
lopment methodology to teach the students for designing programs at the
Eotvos Lorand University in Budapest. As a teaching aid, the language
helps the students to grasp the common features of different programs mee-
ting the same specification and reduce the complexity of the proof of cor-
rectness.

It can also be used as a tool for defining abstract algorithms, as illus-
trated in the paper. Such algorithms or verified abstract programs can be
implemented on a given hardware and software environment.

REFERENCES

[1] Lucas P., Lauer P., Stiegleitner H.: Method and notation for the formal definition of
programming languages. IBM Lab. Vienna, TR 25.087, 1968.

[2] Lucas, P. Walk K.: On the formal description of PL/1. Annual Review in Automatic
Programming 6. 105 — 182 (1969).

[3] Neuhold E. J.: The formal description of programming languages. IBM Systems J.,
10. (1971).

[4] Lee, J. A. N.: Computer semantics. Van Nostrand Reinhold Co., New York, 1972.
[56] Wegner P.: The Vienna definition language. Comput. Surveys 4. 5—63 (1972).

[6] Hoare, C. A. R.: An axiomatic basis for computer programming.
Comm. ACM 12, 576 — 580 (1969).

[7] Owicki, S., Gries, D.: Axiomatic proof techniques for parallel programs.
Acta Informatica 6. 319 —340 (1976).

E6tvos Lorand’s University
Department of Numerical Analysis and Computer Science
1088 Budapest, Mtizeum krt. 6 —8.

6%

