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1. Introduction. Present paper deals with a method tracing back inves-
tigations connected with polynomials to the field of matrix theory. A well
known example of this method is the following.

Let {a)}{=o be complex numbers, 1€ N. To the polynomial
(la) p(x) =x"+a,_;x"" 1+ ... 4+a,x+a,
we can join the matrix

-0 10... 0 T
0 01... 0
(16) A=
0 0 1
| — 4y —Q, e =]

with complex elements, i.e. A €C"*", This matrix occurs in the theory of the
linear differential equations. The characteristic polynomial of A is a scalar
multiple of p, hence the roots of p and the eigenvalues of A are the same.
Thus, the theorems of the matrix theory can be applied for the study of the
roots of polynomials. Among them the following seems to be the most
general and frequently used one.

Theorem (Gerschgorin): Let A = (a,.k)f-;= 11,’ e egnxn,
ri= > layl, 1=si=n, K, = {2€C; |z—a;,|=r}.
=
Then K = U K; contains all the eigenvalues of A. Moreover, if K can be
i=1
divided in two disjoint parts K = K1UK?, where K! = U K;, K2= U K,,

iel i€ls
| I,| = k, then K* contains k, K2 contains r1—k eigenvalues of A.
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In the above case the theorem gives that, the roots of p lie in the circle
with center in the origo and with radius

2 1+ max |a

O=i=n-1

This example illustrates the advantage of replacing a polynomial — for a
special purpose, of course — by a suitable matrix. The correspondence (la)—
(1b) is, however, not the most fortunate one.

His disadvantages are:

a) The centres of the Gerschgorin-circles are the same, hence this mat-
rix cannot be used to localize to disconnected domains the roots of
the polynomial, thus (2) gives a rough estimation in some sence.

b) The pre-cited method gives for a polynomial only one matrix and
this bounds the wide-spread applications of the matrix theory.

A method doing without these disadvantages is described below.

n
2. Theorem 1. Let p(2) = > a;2' be a complex polynomial, a, = 1.
i=0
Let {Ai}?;{ be different complex numbers, and

n—1
A= —a,_,— > A,
i=1

There exist complex numbers {xi},-"=_l7 such that the matrix

A0 ... 0 X,

0 A4 ...0 X,
(3) A=]| -

0 - Apoy Xpoy

X, Xy .. Xpoq A,

satisfies the relation
(4) p(A) = det (AI— A)

where I is the identity, and the numbers {x,-}?;,1 can be expressed explicity
via the formulas

(5) X, = #)_ﬁ I=i=n-1
II (Ai—A)
i=1
J=i

taking any value of the square root. —
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Remark: We describe two proofs. The first one is the direct way to get
the result, as for the second one it proves the theorem knowing the formulas
(5) very shortly.

PROOF 1. Compare the coefficients in p(4) and det (A]— A). By fixed
{A)i=1 we get a system of n— 1 linear equations with the unknowns {x,-z}?;}.
(Notice that there is no chance of expressing {A}{—; via {x2}{Z], because —
consider the case x; = 0, I=i=n—1 — it would be equivalent to be able
to solve an algebraic equation of degree n).

Expanding the determinant in (4), we obtain

n n—1 n-—1
(6a) P =T G=A)— > Xt [T A—A).
i=1 i=1 jl:z
The k-th elementary symmetric polynomial of A, [€H will be denoted by
Siie e (H is a subset of {1, 2, ..., n}). Let S{ArEm 2 m — g and for
k<0 let SFA ™ = 0.
Now, (6a) can be rewrltten as

(66) Z a2 = Z{(—l)n €Syt (=it 'S) SPieg ™ “}z

k=0 i=1

Hence
n—-1
S (- 1RSSR O = (— 1) RS, —ay, k=0,1, ..

The coefficients of A” dnd An—1 are equal in both sides of (6b), in view of the
conditions a,_, = — Z A, = =8, and a, = 1. Therefore the equations

for k = n—1, n may be omitted.
In order to apply matrix symbolics we use the following notations:

2o =x2, 1sk=n—1,b, = (= 1)Sy1o—ap_y_s, O=k=n-2,

2 by
2y b,

y A Ecn—l; b: — Ecn—l;
2)1"‘1 bn—2

B: = ((— 1)y S P)iZ 5 58T o €CnmbxmD

ey

Then (6a) and (6b) is equivalent to
() Bz =0»b
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or,
1 1. .. 1 X3
—Ay—Ay— . A —A A= A || X
(=1 A A;- ... -A,_, (—1)"A A, ... A, _ xz_,
Sp—ap_s |
—83—a,_3
(—l)”Sn—aO

Observe, that the i-th column of B consists of the coefficients of

n-—1
q(3) = H (A_Aj)'
ot
Thus, with the matrix

A2 0 A ]
C:=]A432%...4, 1

AnT3 . A
it holds _
16:(4,) 0 0
0 ¢y(A,y)
CB = = diag [¢(A)],
0
. 0 M 0 qn—l(An—l)_
and finally,
l 0 0
q,(A,)
0 -
1
8 Bl= -C:diag[ ]-c
®) . q.(A))
0
_ o Gn-r(An-1) |
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n—1

(Obviously ¢,(A)=0, 1=i=n—1, because {A;}i_, are different numbers).
Now from (7) and (8) we obtain

z:B—lb:diag[ ]Cb,
. q{A)
that is
(9) x%:z,.=Lb)",1§i§n—l.
9:(A)
Compute (Cb),, the i-th component of Cb. To thisend, letb = 7+9,
pir=(=1)-8.y 0= —a,_;,, 0=i=n-2,
Yo 9,
Y1 8,
5} — . Ecn—l) o = Ecn—l'
Yn—2 _an—‘.!_
Then

n n 1
(Cy); = Z(—l)jA{'_ij = Z—-Z =0—Ar4+ S, A1,
i=2 j=0 j=0

M:

J

n-2 n
€)= =3 a;Aj= =3+ 3 = —p(A)+AT+a,, AT
j=0 0 j=n-1

]

Consequently, using again the relation S; = —a,_,, it follows:
(10) (Cb); = (Cy)i+(Co); = —p(A)-
By (9) and (10) x? = ﬁ& , which was to be proved.
H (Ai— Aj)
j=i

PROOF 2. To prove (4), we use the formulas (5) for x;,, I=i=n—1.
The coefficients by A* and A*~! are at both polynomials the same, thus our
proof is ready if we find n—1 numbers, for which in (4) — or equivalently
in (6) — the equality holds. But it is easy to see, that for this aim the num-
bers {A){Z] are suitable.

Combining Theorem 1 and the theorem of Gerschgorin we get imme-
diately:

n
Theorem 2. Let p(1) = >' a;4' be a complex polynomial, a, = 1; (AJZ1

i=0
be different complex numbers and

n-1
Apt= —ap,— D A,

i=1

3 ANNALES-Sectio Computatorica— Tomus 1.
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Let

- = Ip(A)] ; R
re =V o4, l=i=n-1, r,,.:er,

_]_[l |A;— Al j=1
ot

n
K;:= {2€C; |2— A;|=r}, 1=i=n—1.Then K = |y K,.containsall the roots
i=1
of p. Moreover, if H can be divided in two disjoint parts, K = KU K2 where
K= U K;, K2= U K,, |I,| = k, then K contains k, K2 contains n—k

iel i€l
roots of p.

3. In this point we will demonstrate a practical application of the pre-
vious section. We use the above notations, and assume that p(A,) = 0.
To construct an iteration process converging to the roots of p, or equivalently,
to the eigenvalues of A, we start from the fact that eigenvalues are invariant
under similarity transforms and in the obtained matrix we try the elements
»pack into the main diagonal«.

Detailing, let Y €C"*" be the sum of the unit matrix and the matrix
having y; in the (i, n) positions, | =i=n—1.
n—17

Let £: = z_: x; y;. Then
i=1

(11) Y LAY =
(A =X,y — X0 —Xp—1 W1 X —nt+A4,—4A) 7]

—X; Yy Ag—Xp¥y - - —Xpn—1Y2 Xy —Yolt+ A, — Ay)

=Xy ¥p-1 =X ¥n-1 *  Apc1—Xn-1Vn-1 Xn1—Yna(+A,— A, )
. X Xy Xn—1 A+t

-t

Denote by f(31, ¥a» - - ., ¥,_1) the quadratical sum of the moduls of the
nondiagonal elements in Y~ AY. The problem:
O Yo o5 Ypoy) ~min

n—1
(12) subject to > x; ¥, =0

i=1
has an unique solution, which can be computed explicitly, because the res-

n—1
triction of f on the hyperplane >' x;y, = Ois a positiv definite quadratic

i=1
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form. Let y,, ..., ¥, be the optimal variables. Taking the main diagona
of (11)into consideration, the following iteration procedure can be construc

ted:
Al = A—x;9,;, 1=si=n-1
(13)
A;l]ew: — An‘
Remarks

n—1
a) The restrictiont = > x;y; = 0in (12) is necessary, because p(A,) =
i=1
= 0 and, thus A, need not change.

b) Although {7,)7=1 have explicite expressions, the presence ot the
Lagrange-multipliers makes (13) difficult to handle. This is the rea-
son why we prefer the following procedure which is easy to manage
theoretically too.

Going back to (11), let
- X
A, - A,

This choice has the advantage, that the last column (except his last element)
will be zero. Indeed,

, I=si=n—1.

yE

n-1 n—1 x“;
t= Z X yE = Z
i=1

S OA—A
this follows from (6), setting i: = A, and dividing by

’

n—1
)i (A,,—A]).
j=1
Therefore,
xi_y;k(t"*_An_Ai) = xi—y?(An_Ai) = 0.

The iteration process obtained in this way is:

2 .
APV = Aj—x, yF = Ai_ﬁ = Ai—Tp%’ I=i=n-lI
" J=t

A;‘lleW: — An-

Now, (14) has an interesting geometrical interpretation. Let {A;}i_n be the
approximations of the roots of the polynomial p. Introducing the polynomial

@) = J (= A)
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(14) is equivalent to

(15) Ap: = 4, - A
9'(A)
(c. f. the Newton-method!). By standard means can be proven the following
theorem.
Theorem 3. Let p be real polynomial having the real and different roots
{o;}i=1- Then (15) is a locally quadratic convergent iteration process, i.e.

I if | AV — ;| are sufficiently small, 1=i=n—1 then

lim A” = «,, l=i=n—1
r

where A{" is the r—th iterate of «;.
2. Under the above hypothesis the convergence is of second order, that
is
lle 4| = O(lle"11*),
where
6 =Al—u;, 1=i=n—1

Remark. We assume that A{) are real, 1=i=n—1. Then, obviously,
A" are real , re N.
PROOF. Subtracting «; from equation (15), | =i=n—1 and setting

| A T _“1
A, Xy
A — : ERn—l; e ERn—l;
An—l L%n—1
| &
. g:
g(A): = Ai_“i*»_n—p(L; g = l ’
II (Ai—A))
j=1
Jj#i 8n—1

geR" 1> R""1 we obtain: e +1 = g(A").
First we prove that g(«) = 0 and g’(x) = 0.

gle) = — — ple) = - p() =0
H (al_a]) p/(ai)
=1
Ji

(«; is of multiplicity 1) l=i=n-1.
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Calculating g’(«), let i k. Then

3g1(A) _ (A) . _J'gk (Ai_ A]) , 3gl(“) -0
d Ay l J_]Ji(Ai—Aj)z 9 Ay

On the other hand,

PA) IT (A= A)=p(A) -2 [T (A= 4)

08(A) _ | _ DEL
3A,- j]Zi(Ai_Aj)Z

9 gdx) - 1 p’(xy)? -0

9 A p'(a)?

Now, the equations g(«) = 0, g'(x) = 0 implicate the locally quadratic con-
vergence. We have

(16) et =g(A) = g(a)+g'(a)€’+%<g”(°€) er, e+ o(ller]]*) = O(lle"lf?)

because of the boundedness of g” in a neighbourhood of a.
Therefore there exist positive numbers K and e, such that

lerTHI=K - fler|f?, if [ler]| <e.
Let the starting value A® will be chosen according to the inequality
g: = Klet| <1.

Then |je" T =(K - |le'|)* ~'<¢¥ -!-||e!|j, and lime = 0.

Combining this with (16) our theorem is proved.

Remark. Both (12) and (14) proved to be good machine procedures. The
computer experience shows that (14) — and (12) — produce not only local
convergence — c. f. Theorem 3 —, but also in some sence global convergence.
The starting values {A{®}/= need not be contained in small neighbourhoods
of the roots {oc,-}?;1 of p: the procedure is in these cases convergent, too. A
future examine is to investigate this problem.








